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Vision 

To be a pioneer in electrical and electronics engineering education and 

research, preparing students for higher levels of intellectual attainment, and 

making significant contributions to profession and society. 

 

Mission 

• To impart quality education in electrical and electronics engineering 

in dynamic learning environment and strive continuously for the 

interest of stake holders, industry and society. 

• To create an environment conducive to student-centered learning and 

collaborative research. 

• To provide students with knowledge, technical skills, and values to 

excel as engineers and leaders in their profession. 

 

Program Educational Objectives 

1. Graduates will have technical knowledge, skills and competence to 

identify, comprehend and solve problems of industry and society.  

2.  Graduates learn and adapt themselves to the constantly evolving 

technology to pursue  higher studies and undertake research. 

3. Graduates will engage in lifelong learning and work successfully in teams 

with professional, ethical and administrative acumen to handle critical 

situations. 
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Branch    : EEE Credits :  4 

=============================================================== 

 
1. Brief History and Scope of the Subject 

 

As the long history of numerical techniques indicates, numerical analysis 

does not require any particular computer resources.  On the other hand, the 

scale and complexity of the problems that can be solved in a particular 

manner are strongly influenced by the availability of high-speed computers 

and efficient software implementation of numerical algorithms.  

Understanding the basic numerical methods and the issues involved in 

designing and analyzing them is a first step in the use of these techniques 

for real-world problems.  Implementing the appropriate method, or using 

existing software, or a combination of the two approaches, is necessary to 

achieve the final goal. 

MATLAB has been chosen as the programming environment for the 

presentation of numerical techniques for two reasons. First, MATLAB 

provides outstanding graphing and programming capabilities, together with 

the ability to solve many types of problems symbolically as well.  Second, 

MATLAB’s underlying matrix structure makes the software especially useful 

for focusing on the aspects of various numerical techniques that can be 

described conveniently in vector form.  Because, vectorization is an 

important approach to parallel computing. 

2. Pre-Requisites 

 
Basic Knowledge of linear algebra, and calculus 

 

3. Course Objectives: 
 

 To introduce the various numerical techniques using MATLAB 

 To be aware of different methods to solve first order differential 

equations 
 To construct a curve for the given data. 



 

4. Course Outcomes:  
 

Upon successful completion of the course ,the students will be able to  

             CO1: Demonstrate various commands in MATLAB programming. 

             CO2: Analyse a mathematical problem and select a suitable  

  numerical technique to implement it in MATLAB programming. 

CO3: Construct an interpolating polynomial for the given data using  

         MATLAB. 

             CO4: Find derivatives and integrals by using numerical techniques  

                      using MATLAB. 

             CO5: Utilize method of least squares to fit a curve for the given data  

                      using MATLAB. 

 

5. Program Outcomes: 
 

The graduates of electronics and communication engineering program 

will be able to 
a) apply knowledge of mathematics, science, and engineering for 

solving intricate engineering problems. 

b) identify, formulate and analyze multifaceted engineering problems. 

c) design a system, component, or process to meet desired needs 
within realistic   constraints such as economic, environmental, 

social, political, ethical, health and safety, manufacturability, and 

sustainability.  
d) design and conduct experiments based on complex engineering 

problems, as well as to analyze and interpret data.  

e) use the techniques, skills, and modern engineering tools necessary 
for engineering practice.  

f) understand the impact of engineering solutions in a global, 

economic and societal context. 
g) design and develop eco-friendly systems, making optimal utilization 

of available natural resources.  

h) understand professional ethics and responsibilities. 

i) work as a member and leader in a team in multidisciplinary 
environment.   

j) communicate effectively. 

k) manage the projects keeping in view the economical and societal 
considerations. 

l) recognize the need for adapting to technological changes and 

engage in life-long learning. 



 

6. Mapping of Course Outcomes with Program Outcomes: 

 

 a B c d e f g h i j k l 

CO1 M H  H H       H 
CO2 H H  H H        
CO3 H H  H H        

CO4 H H  H H        
CO5 H H  H H        

 

 

7. Prescribed Text Books 
 

1. Laurene V. Fausett  ,Applied numerical analysis using MATLAB:       

    2nd edition, Pearson  publications, 2012, NewDelhi 

          2. B.S.Grewal, Higher Engineering Mathematics : 42nd edition,  
     Khanna Publishers, 2012 , New Delhi. 

          3. B.V Ramana, Higher Engineering Mathematics, Tata-Mc Graw Hill  

    Company Ltd. 
 

8. Reference Text Books 

 
1. Erwin Kreyszig, Advanced Engineering Mathematics : 8th edition, 

Maitrey Printech Pvt.  Ltd,  2009, Noida. 

2. Robert J.Schilling, SandrabL .Harries, Applied Numerical methods for 

engineers using MATLAB & C, Thomson books. 

3. John.H.Mathews, kurtis D.Fink, Numerical methods using MATLAB, 

4th edition-PHI. 

4. Steven C.Chapra, Raymond P.Canale, Numerical methods for 

Engineers, 3rd Edition, TATA McGrawhill, 2000, NewDelhi. 

 

9. URLs and Other E-Learning Resources. 
 

Sonet CDs & IIT CDs on some of the topics are available in the digital 

library. 

 
10. Digital Learning Materials: 

 
https://youtu.be/R5eSBMP3XAM?list=PLEJxKK7AcSEFtiPAlDTJywUIAIF8FGYXA 
https://youtu.be/6F89wOGgRf0?list=PLTwPa5Tfu7AULpYLzEGS5c2SFyuD5sOFt 
https://www.youtube.com/watch?v=sZ_nCZjokQs 
https://www.youtube.com/watch?v=fCKUOWiM-6s 
https://www.youtube.com/watch?v=-QoZcEoGDEQ 
https://www.youtube.com/watch?v=NZfd-EuBYyo 

https://youtu.be/R5eSBMP3XAM?list=PLEJxKK7AcSEFtiPAlDTJywUIAIF8FGYXA
https://www.youtube.com/watch?v=-QoZcEoGDEQ


https://www.youtube.com/watch?v=ElEqbKICvEs 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11. Lecture Schedule / Lesson Plan 

 

S.No Topics Covered  Periods  Tutorial 

UNIT-I: Introduction to MATLAB 

1 Introduction and MATLAB Environment 1 

1 

2 Basic Commands 1 

3 Variables 1 

4 Arithmetic operations 1 

5 
One dimensional array-vectors and operations 

on vectors 
1 

6 
Two dimensional array-matrices and 

operations on matrices 
1 

1 
7 Scripts and Functions 1 

8 2D-Plotting  1 

UNIT-II: Algebraic and Transcendental Equations 

9 Introduction and interval calculation 1 

1 10 Bisection Method 2 

11 Method of False Position 2 

12 Newton- Raphson Method. 2 1 

UNIT-III : Interpolation 

13 Introduction 1 

1 14 Finite  differences 1 

15 Construction of difference tables & problems 2 

16 
Newton's Forward  Difference formula for 

interpolation 
2 

1 

17 Newton's Backward difference formula for 2 

https://www.youtube.com/watch?v=ElEqbKICvEs


interpolation 

18 
Gauss Forward  Difference formula for 

interpolation 
2 

1 
19 

Gauss Backward difference formula for 

interpolation 
2 

20 Lagrange's Interpolation formula 2 

UNIT-IV: Numerical differentiation and integration 

21 
Introduction to Numerical differentiation and 

formulae 
1 

1 22 
Numerical differentiation by Newton’s Forward 

differences 
1 

23 
Numerical differentiation by Newton’s 

Backward differences 
1 

24 Numerical Integration by Trapezoidal rule 1 

1 25 Numerical Integration by Simpson’s 1/3rd rule 1 

26 Numerical Integration by Simpson’s 3/8th rule 1 

UNIT-V: Numerical solution of Ordinary Differential equations 

27 Introduction 1 

1 28 Taylor’s  series Method 2 

29 Euler’s  Method 1 

30 Modified Euler’s  Method 1 
1 

31 Runge-Kutta Methods of 4th order 2 

UNIT-VI: Curve Fitting 

32 Introduction and Method of  least squares 1 

1 33 Fitting of a straight line 1 

34 Fitting of a Parabolic curve 1 

35 Fitting of an exponential curve        1 

1 36 Fitting of an exponential curve       1 

37 Fitting of a power curve 1 

TOTAL 48 13 

 

12. Seminar Topics: 

1. Newton – Raphson method 

2. Lagranges Interpolation formula 

3. Trapezoidal, Simpson 1/3 rule. 

4. Derive Normal equations to fit a parabola by Method of least squares. 

13. List of Lab Experiments 



S.No Title of Lab Experiments Periods  

1 MATLAB Programs - function programs – Expressions - Array 
Operations. 

2 

2 To find out the root of the Algebraic and Transcendental 
equations using (i).Bisection, (ii). Regula – falsi method 

2 

3 To find out the root of the Algebraic and Transcendental 
equations using Newton – Raphson method. 

2 

4 To implement Newton’s Forward and Backward Interpolation 
formula. 

2 

5 To implement Gauss Forward and Backward interpolation 
formula. 

2 

6 
To implement Lagranges Interpolation formula. 2 

7 To implement Numerical Differentiations Newton’s interpolation 
formulae. 

2 

8 To implement Numerical Integration using Trapezoidal, Simpson 

1/3 rule. 
2 

9 To find out the Numerical solution of  ordinary differential 
equations using Euler’s Method 

2 

10 To find out the Numerical solution of ordinary differential 
equations using   R-K Method of fourth order. 

2 

11 To implement Least Square Method to fit a Straight line and 
Parabolic curve. 

2 

12 To implement Least Square Method to fit an exponential curve 
and power curve. 

2 

TOTAL 24 

 

NUMERICAL METHODS WITH COMPUTER APPLICATIONS 

                          UNIT– I: Introduction to MATLAB 

Pre-requisite :  Basics of Linear algebra  

 
Syllabus: Variables - Arrays: Vectors & Matrices - Array Operations – functions 

- plots in MATLAB  

 

Course Objectives: 

 To familiarize with the environment of MATLAB and its components. 
 To introduce various data types and variables in MATLAB. 

 To distinguish various aspects of MATLAB scalars, arrays-vectors, 

matrices. 

 To get acquainted with the built-in functions on scalars, arrays-vectors, 
matrices. 

 To learn how to create and execute script and function files in MATLAB. 



 To learn about plot functions using MATLAB. 

 
Course Outcomes: 

 

The students are able to  
 Launch a new MATLAB session, work on desktop environment and 

terminate the session  

 Use various commands in MATLAB 

 Create variables, scalars, arrays-vectors and matrices 
 Use various built-in functions on different types of data 

 Plot graphs using MATLAB commands with different style options 

 Create and execute script and function files 
 

Introduction: 

 The name MATLAB stands for MATrix LABoratory 

 Developed primarily by Cleve Moler, Chairman of 

the Computer Science Department at the University 

of New Mexica in the 1970's 

 Gained its popularity through word of mouth, 

because it was not officially distributed. 

 The MathWorks Inc., Natick, Massachusetts, USA 

was created (1984) to market and continue 

development of MATLAB. 

 

 

Features of MATLAB 

 MATLAB is a high level interpreted programming language with 

interactive environment provides vast library of mathematical functions 

for numerical computation, visualization and application development. 

 It is a case sensitive language. 

 

Schematic diagram of MATLAB’s main features 



 

 

 

MATLAB Work Environment: 



Four  Important Windows 

 The Command Window is where we type in Matlab commands.  

 The Command History Window shows the commands we have entered 

in the past.  We can repeat any of these commands by double-clicking on 

them, or by dragging them from the Command History Window into the 

Command Window. We can also scroll back to previous commands by 

using the up arrow in the Command Window.  

 The Workspace shows the list of variables that are currently defined, 

and what type of variable each is. (i.e. a simple scalar, a vector, or a 

matrix, and the size of all arrays. ) Depending on the size ( i.e. type ) of 

the variable, its value may also be shown.  

 The Current Directory Window shows the contents of the current 

working directory.  

 
Creating MATLAB variables 

 
 Variable is a name made of a letter or a combination of several letters 

that is assigned a value or an expression.  



 MATLAB variables are created with an assignment statement.  

 
 The syntax of variable assignment is 

variable_name = a value (or an expression) 
 

For example, 
 

>> x =2 
 

Where  expression can involve: 

 manual entry 

 built-in functions 

 user-defined functions 

Rules for variable names 

 A valid variable name starts with a letter, followed by letters, digits, or 

underscores.  

 MATLAB is case sensitive, so, A and   a   are not the same variable.  

 We cannot define variables with the same names as MATLAB keywords, 

such as if or end.  

 For a complete list, run the iskeyword command. 

 

Examples of valid names: Invalid names: 

x6 6x 

lastValue end 

n_factorial n! 
 

MATLAB System Variables 

MATLAB has certain variables that are recognized by MATLAB itself and not 

defined by the users. 

Variable Description 

ans This variable is automatically generated by MATLAB when there is 

no variable assigned to store the result of an expression 

inf It represents infinity, generated usually when a number is divided 

by zero 

eps This is a constant value representing the floating point relative 

accuracy uses in its calculations 

NaN It represents Not a Number. Resulting from operations like 0/0 and 

inf / inf 

pi This represents the constant value of  π = 3.14159… 

i As the basic imaginary unit sqrt(-1), i is used to enter complex 



numbers 

Ex.: Z = 2+3i 

j Use the character j in place of the character i, if desired, as the 

imaginary unit.  

 

MATLAB Data types 

MATLAB, as a computing language, recognizes different types of data.   

 

Scalars :   

 Any number that represents magnitude (quantity or measure) is known 

as scalar. 

 This includes integers, complex number and floating point numbers 

 For example :  5, -7,  4 + 5i, -45.18 etc. 

Characters : 

 The character constant is an alphanumeric symbol enclosed in a single 

quote. 

 The character that is not represented in single quote is numeric or sign. 

 For example : ‘H’, ‘4’, ‘*’, ‘+’ etc. 

Arrays : 

 An array is a list of homogenous data placed in rows and/or columns 

form 

 The elements of an array can be numeric or character or strings, but not 

mixed up. 

 An array is written using square brackets enclosing its elements 

separated by commas or spaces  

 For Example : [4, 8, 3, -5], [cleve, moler] etc. 

Strings : 

 Any two or more alphanumeric symbols enclosed in a single quote is 

known as string data 

 For example : ‘INDIA’, ‘MATLAB’ etc. 



 A string is an array of characters, i.e., ‘INDIA’ is equivalent to [‘I’, ‘N’, ‘D’, 

‘I’, ‘A’] 

Cell arrays :  

 A cell array is a special type of arrays, where the elements can be of 

different types 

 The elements of a cell array are enclosed using braces 

 For example : {‘south’, 544, ‘+’, ‘book’} 

COMMAND HANDLING 

 

Common System Commands 

Command Description Purpose /  Action 

>> clc Clear command 

window 

Clears the command window.  

All the variables still appear in 

the workspace 

>> delete filename or  

     delete (‘file name’) 

Delete any 

undesired files 

The file is deleted from the 

current directory 

>> cd pathname or 

     cd (‘pathname’) 

Change the 

directory 

Used to the change the 

working directory 

>> copyfile (‘source file’, 

‘destination file’) 

Copying file Used to copy a file from source 

to destination 

>> dir directory_name 

    dir (‘directory_name’ ) 

Directory Used to list the name of 

subdirectories and files under 

a directory 

>> date Date Displays current date 

>> save  Saves workspace variables in a 

file 

>> load  Loads workspace variables 

from file 

>> type  Displays contents of a file  

 



Workspace Commands 

Command Description Purpose /  Action 

>> clear  

 

Clears all variables It deletes all variables from 

the current directory 

>> clear x y z Clears specific 

variables 

It deletes specific variables 

from the current directory 

>> who  Used to list out variables 

used in current workspace 

window. 

>> whos  Used to list out variables 

along with their size 

>> help  Used to get help for MATLAB 

related function. 

>> help sqrt 

SQRT(X) is the square root of 

the elements of X. Complex 

results are produced if X is 

not positive. 

>> quit/exit  Stops MATLAB 

>> exist  Checks for existence of a file 

or variable 

SCALARS 

 In MATLAB a scalar is a variable with one row and one column.  

 Scalars are the simple variables that we use and manipulate in simple 

algebraic equations.  

Creating scalars 

To create a scalar you simply introduce it on the left hand side of an equal 

sign.  

 >> x = 1; 

 >> y = 2; 
 >> z = x + y; 



Scalar operations 

MATLAB supports the standard scalar operations like addition, subtraction, 

multiplication and division.  

 >> u = 5; 

 >> v = 3; 
 

Operation Description Example 

Addition 
Performs addition on two 

scalar values 

>> w=u+v 

w =  8 

Subtraction 
Performs subtraction on 

two scalar values 

>> w=u-v 

w =  2 

Multiplication 
Performs multiplication 

on two scalar values 
>> w=u*v 
w =  15 

Division 
Performs Division on two 

scalar values 

>> w=u/v 

w = 1.6667 

Exponentiation 
Performs Exponentiation 

on two scalar values 
>> w=u^v 

     w =125 

Some Built-in Scalar Functions: 

 

Certain MATLAB functions are essentially used on scalars 
 

Function Syntax Description Example 

Sin sin(x) trigonometric sine 
>> sin(pi/2) 
ans =   1 

Cos cos(x) trigonometric cosine 
>> cos(pi/2) 

ans =  6.1230e-017 

Tan tan(x) trigonometric tangent 
>> tan(pi/4) 
ans =   1 

Asin asin(x) 
trigonometric inverse sine 

(arcsine) 

>>asin(pi/4) 

ans =   0.9033 

Acos acos(x) 
trigonometric inverse cosine 
(arccosine) 

>> acos(pi/4) 
ans =   0.6675 

Atan atan(x) 
trigonometric inverse tangent 

(arctangent) 

>> atan(pi/4) 

ans =   0.6658 

Exp exp(x) Exponential (ex) 
>>exp(2) 
ans = 7.3891 

Log log(x) natural logarithm 
>> log(2) 

ans = 0.6931 

Abs abs(x) absolute value 
>> abs(-2) 
ans = 2 

Sqrt sqrt(x) square root 
>>sqrt(16) 

ans = 4 

Rem rem(x,y) remainder 
>> rem(12,5) 

ans =  2 



Round round(x) round towards nearest integer 

>> round(5.45) 

ans = 5 
>> round(5.75) 

ans = 6 

Floor floor(x) round towards negative infinity 

>> floor(5.45) 

ans = 5 
>> floor(5.75) 

ans = 5 

Ceil ceil(x) round towards positive infinity 

>> ceil(5.45) 
ans = 6 

>> floor(5.75) 

ans = 6 

 

 

 

 

 

VECTORS 

 In MATLAB a vector is a matrix with either one row or one column. 

Creating vectors 

1. using the built-in functions ones, zeros, linspace, and logspace  

2. assigning a mathematical expressions involving vectors  

3. appending elements to a scalar  

4. using colon operator 

Creating vectors with ones, zeros, linspace, and logspace 
 

Function Syntax Description Example 

ones ones(1,n) 

 

 

ones(n,1) 

 

creates a row vector of 

length n, filled with ones 

 

creates a column vector of 

length n, filled with ones 

>> x=ones(1,5) 

  x =   1    1    1    1    1 

 

>>x=ones(3,1) 

x = 1 

      1 

      1 

https://web.cecs.pdx.edu/~gerry/MATLAB/variables/vectors.html#IncreaseElements


zeros zeros(1,n) 

 

zeros(n,1) 

creates a row vector of 

length n, filled with zeros 

 

creates a column vector of 

length n, filled with zeros 

>> x=zeros(1,5) 

x =    0    0    0    0    0 

 

>>x=zeros(4,1) 

x = 0 

      0 

      0 

      0 

linspace linspace 

(begin, end, 

no. of 

elements) 

creates a vector with 

linearly spaced elements 

starting from begin to end.  

 

>> x = linspace(1,5,5) 

x =  1     2     3     4     

5 

 

>> x = linspace(1,5,2) 

x =  1     5 

logspace logspace 

(begin, end,  

no. of 

elements) 

creates a vector with 

logarithmically spaced 

elements starting from 

begin to end.  

 

>> y = logspace(1,4,4) 

y =  10   100   1000    

10000 

 

>> y = logspace(1,4,2) 

y = 10    10000 

 

 

Creating vectors with Colon (:) operator:  

MATLAB colon (:) operator is often used in creation of vectors. 

 >> x = initial_value : increment  : final_value 

 

 If no increment is specified, MATLAB uses the default increment of 1 

        Examples:  
 >> x = 0:10:100 

  x = [0 10 20 30 40 50 60 70 80 90 100] 

  
 >> a = 0:pi/50:2*pi 

  a = [0 pi/50  2*pi/50 . . . . . .2*pi] 

  

 >> u = 3:10  
  u = [3 4 5 6 7 8 9 10] 

 



 To create a column vector, append the transpose operator to the end of 

the vector-creating expression  

 >> y = (1:5)' 
 

 y =  1 

        2             
        3 

        4 

        5 

 Using colon operator to create a vector requires you to specify the 

increment, whereas using the linspace command requires you to 

specify the total number of elements.  

 

Assigning vector expressions to a vector 

 Once a vector is created, it may be assigned to another vector.  

 The following statements create a row vector, x, and then copies the 

third through seventh elements of x into y.  

 >> x = linspace(31,40,10); 

 >> y = x(3:7) 

     y =  33    34    35    36    37 

 >> y(3) 

     ans =  35 

Addressing vector elements 

 Individual elements of a vector can be addressed with a subscript.                    

Example :  

>> x = linspace(11,15,5); 

>> x(2) 
          ans =  12 

Increasing the size of a vector (or scalar) 

We can increase the size of a vector simply by assigning a value to an element 

that has not been previously used.  

 >> x = linspace(21,25,5) 

        x =  21    22    23    24    25 
  

 >> x(7) = -9 



     x =  21    22    23    24    25     0    -9 

 
Vector Operations: 

 

>> x = [1  2  3]   >> y = [3  4  6] 
 

Operation Description Example 

+ Addition of two vectors >> Z=X+Y 

Z =  4     6     9 

- Subtraction of two vectors >>Z=X-Y 

Z = -2    -2    -3 

* Multiplication of two vectors >> Z=X * Y' 

Z =  29 

.* Element-by-element 

multiplication 

>> x.*y 

ans = 3   8  18 

. / Element-by-element left division >> x./y 
ans = 0.3333   0.5000   

0.5000    

. \ Element-by-element right division >> x.\y 

ans =  3   2   2 

.^ Element-by-element 

exponentiation 

>> x.^y 

ans = 1  16    

 

 

 

 

 

 

 
Some Built-in vector functions: 

 
The following MATLAB functions operate on vectors and return a scalar value.  

 

Let z be the following row vector. 
>> z = [34, 5, 11, 90] 

 

Function Description Result 

Max Largest component >>max(z)  
ans = 90 

Min Smallest component >>min(z)  

ans = 5 

Length length of a vector >>length(z)  
ans = 4 



Sort 
sort in ascending 

order 

>>sort(z)  

ans = [5,11,34,90] 

Sum sum of elements >>sum(z) 

ans = 140 

Prod product of elements >>prod(z)  
ans = 168300 

median median value >>median(z)  

ans = 22.5000 

Mean mean value >>mean(z)  
ans = 35 

Std Standard deviation >>std(z)  

ans = 38.7384 

 
 
 

MATRICES 

 
Creating Matrices 

 

Function Description Example Result 

eye  Identity matrix » eye(3) 
  

 

 
» eye(3,4) 

 

1 0 0  
0 1 0  

0 0 1  

 
1  0  0  0 

0  1  0  0 

0  0  1  0 

zeros  matrix of zeros » zeros(2) 
 

 

» zeros(2,3) 
   

0 0 
0 0 

 

0 0 0 
0 0 0 

Ones matrix of ones » ones(2) 

   

 
» ones(2,3) 

 

1 1 

1 1 

 
1   1   1 

1   1   1 

diag  extract diagonal of a 
matrix or create 

diagonal matrices 

x =   1     3     4 
        4     5     7 

        5     9     0 

>> diag(x) 
 

 
 

  1 

  5 
  0 

triu  upper triangular part of 

a matrix 

>> triu(x) 

 

1     3     4 

0     5     7 



0     0     0 

tril  lower triangular part of 

a matrix 

>> tril(x) 

 

1     0     0 

4     5     0 
5     9     0 

rand  randomly generated 

matrix 

>> rand(3) 

 

0.9501    0.4860    

0.4565 
0.2311    0.8913    

0.0185 

0.6068    0.7621    
0.8214 

 The above (vector) commands can also be applied to a matrix.  

 In this case, they act in a column-by-column fashion to produce a row vector 

containing the results of their application to each column.  
 

Matrix operations 

        Example: 
  A = [ 1 2 3 ; 4 5 6; 7 8 9]; 

  B = [ 7 5 6 ; 2 0 8; 5 7 1]; 
 

Operation Oper

ator 

Description Example 

Addition + cij = aij + bij >> C=A+B 

C =   8     7     9 

         6     5    14 
       12    15    10 

Subtraction - cij = aij - bij >> C=A-B 

C =  -6    -3    -3 

         2     5    -2 
         2     1     8 

Multiplication *        n 
cij = ∑ aik * bkj 

          k = 1 

>> C=A*B 

C =  26    26    25 
        68    62    70 

      110    98   115 

Right division / C = A/B 

=> A*inv(B) 

>> C=A/B 

C =  -0.5254    0.6864    0.6610 
        -0.4237    0.9407    1.0169 

        -0.3220    1.1949    1.3729 

Left division \ C = A\B 

=> inv(A)*B 

A = [4,5,3;  2,1,4;  3,2,6] 

B = [1,2,3;  4,5,6;  7,8,9] 
>>C = A\B 

C =   -4.2000   -2.4000   -0.6000 

          2.0000    1.0000   -0.0000 
          2.6000    2.2000    1.8000 

Exponentiation ^         n 
cij = ∑ aik * akj 

>> C=A^2 

C =  30    36    42 



          k = 1         66    81    96 

       102   126   150 

Element-by-
element 

multiplication 

.* cij = aij * bij >>C = A .* B 
 

C = [10, 40, 90 ; 160, 250, 360; 490, 

640, 810] 

Element-by-

element left 

division 

. / cij = aij / bij >>C = A ./ B 

 

C = [ 10, 10, 10; 10, 10, 10; 10, 10, 10 
] 

Element-by-

element 

exponentiation 

.^ cij = aij ^ x >>C = A .^ 2 

 

C = [ 1, 4, 9;  16, 25, 36;  49, 64, 81 ] 

 
 

Some Built-in Matrix functions: 

 

A = [1 3; 2 4] 
 

Function Description Example Result 

Size size of a matrix >>Size(A) ans = 2 2 

det Determinant of a square 
matrix 

>>det(A) ans = -2 

inv inverse of a matrix >>inv(A) ans =  -2.0000  1.5000 

           1.0000  -0.5000 

rank rank of a matrix >>rank(A) ans = 2 

eig Eigen values and eigen 

vectors 
 

Produces a diagonal matrix 
‘d’ with the eigen values on 

the main diagonal, and a full 

matrix  ‘x’  whose columns 

are the corresponding 
eigenvectors. 

>>eig(A) 

 

 
>>[x  d]=eig(A) 

ans =  -0.3723 

            5.3723 
 

x =   -0.9094   -0.5658 
         0.4160   -0.8246 

d =   -0.3723         0 

          0             5.3723 

max Produces a row vector with 

maximum element in each 
column 

 

Maximum of all elements of 
matrix 

>>max(A) 

 
 

>>max(max(A)) 

ans = 2  4 

 
 

ans = 4 

PLOTTING 

 

 MATLAB has an excellent set of graphic tools.  



 Plotting a given data set or the results of computation is possible with 

very few commands. 
 

The MATLAB command to plot a graph is plot(x,y).  

 
Example: 

The vectors  

x = (1; 2; 3; 4; 5; 6)  

y = (3;-1; 2; 4; 5; 1)  
>> x = [1 2 3 4 5 6]; 

>> y = [3 -1 2 4 5 1]; 

>> plot(x,y) 

 

 

 
 
 
 
 

 

Adding titles, axis labels, and annotations: 

 
Multiple data sets in one plot 

 

Multiple (x; y) pairs arguments create multiple graphs with a single call to plot. 
For example, 

 

>> x = 0:pi/100:2*pi; 

>> y1 = 2*cos(x); 

>> y2 = cos(x); 

>> y3 = 0.5*cos(x); 

>> plot(x,y1,'--',x,y2,'-',x,y3,':')  

>> xlabel('0 \leq x \leq 2\pi')  

>> ylabel('Cosine functions') 

>> 

legend('2*cos(x)','cos(x)','0.5*cos(x)') 

>> title('Typical example of multiple 

plots') 

>> axis([0 2*pi -3 3]) 
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Specifying line styles and colors 
 

Using plot command, we can specify line styles, colors, and markers 
(e.g., circles, plus signs, . . ) 

 
plot(x, y, 'style_color_marker') 

 
where style_color_marker is a triplet of values  
 

 

 
Example: 

 

    % A simple plot of just one point! 
    % Create coordinate variables and plot a red ‘*’ 

x = [11]; 

y = [48]; 
plot(x, y, 'r*') 

% Change the axes and label them 

axis([9 20 35 55]) 
xlabel('Time') 

ylabel('Temperature') 

% Put a title on the plot 
title('Time and Temp') 

 

Example: 

 
x = [11,15,18]; 

y = [48,50,51]; 

plot(x, y, ':gx') 
   % Change the axes and label them 

axis([9 20 35 55]) 



xlabel('Time') 

ylabel('Temperature') 
   % Put a title on the plot 

title('Time and Temp') 

Introduction to programming in MATLAB 

 

The commands entered in the Command Window cannot be saved and 

executed again for several times.  To execute the commands repeatedly with 

MATLAB is: 

1. to create a file with a list of commands, 

2. save the file, and 

3. run the file. 

 These files are called script files or scripts 

 They must have the file extension “.m” 

 Corrections or changes can be made to the commands in the file 

 There are two types of m-files: script files and function files. 

 M-files can be scripts that simply execute a series of MATLAB 

statements, or they can be functions that can accept arguments and can 

produce one or more outputs. 

 

Script files: A script file is an external file that contains a sequence of Matlab 

statements. By typing the filename, subsequent Matlab input is obtained from 

the file. Script files have a filename extension of .m and are often called M-files.  

Example: 

 
Consider the system of equations: 

 

 

Find the solution x to the system of equations. 
 

Solution: 

 Use the MATLAB editor to create a file: File -> New -> M-file. 

 Enter the following statements in the file: 
A = [1 2 3; 3 3 4; 2 3 3]; 

b = [1; 1; 2]; 

x = A\b 

 Save the file, for example, example1.m. 



 Run the file, at the command prompt , by typing: 

>> example1 

               x = 
-0.5000 

 1.5000 

-0.5000 

Example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Function files: Function file is a script file (M-file) that adds a function 

definition to Matlab’s list of functions.  

Syntax: 

function [output variables] = function_name ( input variables) ; 
 

Example 1: 

function y = myfunc (x) 

y = 2*x^2 - 3*x + 1; 

end 
 

Save this file as: myfunc.m in your working directory.  
 

This file can now be used in the command window just like any predefined 
Matlab function. In the command window enter: 

 

x = -2:.1:2;    % Produces a vector of x values 

y = myfunc(x); % Produces a vector of y values 

plot (x,y) 
 



Example 2: 

Functions can have multiple inputs, which are separated by commas.  

For example: 
 

function y = myfunc2d (x,p) 

y = 2*x.^p - 3*x + 1; 
end 

 

 Functions can have multiple outputs, which are collected into a vector 

 

function [x2 x3 x4] = mypowers (x) 
x2 = x .^2; 

x3 = x .^3; 

x4 = x .^4; 
end 

 

We can use the results of the program to make graphs: 
   x = -1:.1:1 

   [x2 x3 x4] = mypowers (x); 

   plot (x,x,'black',x,x2,'blue',x,x3 ,'green',x,x4,'red') 

 
Difference between Script files and Function files: 

 

Script files Function files 

Do not accept input arguments or 

return output arguments 

Can accept input arguments and 

return output arguments 

Store variables in a workspace that is 

shared with other scripts 

Store variables in a workspace 

internal to the function 

Are useful for automating a series of 

commands 

Are useful for extending the 

MATLAB language for your 

application 

 
 

 

 

 

 

 



UNIT-II : Algebraic and Transcendental Equations 

 

Pre-requisite : Commands of MATLAB 
 

Syllabus : Solution of Algebraic and Transcendental Equations-Introduction - 

Bisection Method - Method of False Position - Newton-Raphson Method. 

 

Course Objectives: 

 To recongnize the algebraic and Transcendental Equations. 
 To Understand the Bisection method, method of False Position and 

Newton Raphson Method. 

 To Implement Bisection, False Position and Newton Raphson Methods in 
MATLAB 

 

Course Outcomes: 

 
Students will be able to 

 

 Solve an Algebraic and Transcendental equation using Numerical 
Methods 

 Find the roots of non-linear equations using MATLAB programs. 
 

Solutions of Algebraic and Transcendental equations 

 

Introduction : A problem of great importance in science and engineering is 
that of determining the roots/ zeros of an equation of the form   f(x) = 0 

 

 Polynomial function:   A function f(x)   is said to be a polynomial function  

                  if  f(x)  is a polynomial in x. 

              i.e. f(x) where ,  

                           the coefficients  are real constants and  

                           n is a non-negative integer. 
 

 Algebraic function: A function which is a sum (or) difference (or) product of  

two polynomials is called an algebraic function. Otherwise, the function is 
called a transcendental (or) non-algebraic function. 

Eg:      
  

 

    

 Algebraic Equation: If f(x) is an algebraic function, then the equation f(x) =0 

is called an algebraic equation.  

 Transcendental Equation: An equation which contains polynomials, 

1 1
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 
3

5 3
2

x x
f x e  



exponential functions, logarithmic functions  and  Trigonometric  functions  

etc. is called a Transcendental  equation. 
Ex:-  xe

2x
– 1 = 0, cos x – x e

x
= 0, tan x = x are transcendental equations. 

 

 Root of an equation: A number α is called a root of an equation f(x) = 0
                

if  f(α) =0. We also say that α is a zero of the function. 
 

Note:  (1) The roots of an equation are the abscissas of the points where the  

               graph  y = f(x) cuts the x-axis. 
              (2) A polynomial equation of degree n will have exactly n roots, real or  

                   complex, simple or multiple. A transcendental equation may have  

                   one root or infinite number of roots depending on the form of f(x). 
 

 

Methods for solving the equation 

 
Direct method: 

We know the solution of the polynomial equations such as linear equation 

 and quadratic equation , will be obtained using direct 

methods or analytical methods. Analytical methods for the solution of cubic 

and quadratic equations are also well known to us.  

 
There are no direct methods for solving higher degree algebraic equations or 

equations involving transcendental functions. Such equations are solved by  

numerical methods. In these methods we find an interval in which the root lies. 
 

We use the following theorem of calculus to determine an initial approximation. 

It is also called the Intermediate value theorem. 
 

Intermediate value theorem  : If f(x)is continuous on some interval [a, b]and  

f(a)f(b)< 0, then the equation  f(x) = 0 has at least one real root  in the interval 

(a, b).  
 

In this unit we will study some important methods of solving algebraic and 

transcendental equations. 
 

Bisection method:  

Bisection method is a simple iteration method to solve an equation. This 
method is also known as "Bolzano method of successive  bisection". Sometimes 

it is referred to as "Half-interval method". Suppose we know an equation of the 

form  has exactly one real root between two real numbers . The 

number is chosen such that  and will have opposite sign. Let us 

0ax b  2 0ax bx c  

  0f x 
0 1,x x

 0f x  1f x



bisect the interval  into two half intervals and find the midpoint 

. If  then  is a root. 

If  and  have same sign then the root lies between  and x2. The 

interval is taken as  Otherwise the root lies in the interval . 

Repeating the process of bisection , we  obtain successive subintervals which 
are smaller. At each iteration, we get the mid-point as a better approximation of 

the root. This process is terminated when interval is smaller than the desired 

accuracy.   
 

 

Problem:-Find a root of the equation  using the bisection method  

in  5 – stages 

Sol:  Let   

             we note that  f(0)   0 and  f(1)   

       Root lies between 0 and 1 
 

      Consider  

       By bisection method the next approximation is  

   

       We have the root lies between 0 and 0.5 

        Now   

        We find  

         Since , we conclude that root lies between  

        The third approximation of the root is  

          

        We have  

        Since , the root lies between  

   

        Considering the 4th approximation of the roots  

   

, 
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since  the root must lie between  and 

 

Here the fifth approximation of the root is   

   

We are asked to do up to 5 stages. We stop here and 0.21875 is taken as an 

approximate value of the root and it lies between 0 and 1 
 

 

MATLAB Program for Bisection method 

 

function c = bisection(f,a,b) 
  
if f(a)*f(b)>0  
    disp('Interval has no root') 
else 
   c = (a + b)/2; 
   while abs(f(c)) > 1e-7 
     if f(a)*f(c)> 0  
       a = c; 
     else 
       b = c;           
     end 
     c = (a + b)/2;  
   end 
end 
     

 

Output 

 

>> f=@(x)x^3-5*x+1; 

>> bisect(f,0,1) 
 

ans = 
 

    0.2016 
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False Position Method ( Regula – Falsi Method) 

 

In the false position method we will find the root of the equation . 

Consider two initial approximate values  near the required root so 

that  have different signs. This implies that a root lies between 

. The curve  crosses x- axis only once at the point  lying 

between the points , Consider the point  and  

on the graph and suppose they are connected by a straight line, Suppose this 

line cuts x-axis at , We calculate the values of  at the point. If 

 are of opposite sign, then the root lies between  and 

value  is replaced by  

Otherwise the root lies between  and  and the value of  is replaced by . 

Another line is drawn by connecting the newly obtained pair of values. Again 
the point here the line cuts the x-axis is a closer approximation to the root. 

This process is repeated as many times as required to obtain the desired 

accuracy. It can be observed that the points  .....obtained converge to 

the expected root of the equation  

 

To obtain the equation to find the next approximation to the root 

 

Let  be the points on the curve  Then the 

equation to the chord AB is  

At the point C where the line AB crosses the x – axis, we have f(x) =0 i.e. y =0 

 From (1), we get  

x is given by (2) serves as an approximated value of the root, when the interval 

in which it lies is small. If the new values of x is taken as  then (2) becomes 

   

Now we decide whether the root lies between  

We name that interval as . The line joining  meets x – axis at 

 is given by  
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This will in general, be nearest to the exact root we continue this procedure till 

the root is found to the desired accuracy.  
 The iteration process based on (3) is known as the method of false 

position. The successive intervals where the root lies, in the above procedure 

are named as  etc 

Where  and  are of opposite signs 

Also  

Problem:-  

Find out the roots of the equation  using false position method 

Sol: Let  

 
 

 

 Since  have opposite signs the root lies between 1 and 2 

 By false position method  

      

   

 Now, the root lies between 1.666 and 2 

   

 Now, the root lies between 1.780 and  2 

   

 Now, the root lies between 1.794 and 2 

   

 Now, the root lies between 1.796 and 2 
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 The root is 1.796 
 

 
MATLAB Program for False Position method 
 

function c=falsePos(f, a, b) 

   %False Position method for nonlinear equation 

  if f(a)*f(b) > 0 

    disp('Interval has no root')  

  else 

     c = (a*f(b)-b*f(a))/(f(b)-f(a)); 

   while abs(f(c)) > 1e-7 

      if f(a)*f(c) > 0 

        a=c; 

      else 

        b=c; 

      end 

      c = (a*f(b)-b*f(a))/(f(b)-f(a)); 

   end 

 
Output: 

 
>> f=@(x)x^3-x-4; 

>> falsePos(f,1,2) 

 
ans = 

 

    1.7963 
 

 

 

Newton- Raphson Method: 
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The Newton-Raphson method is a powerful and elegant method to find the root 

of an equation. This method is generally used to improve the results obtained 
by the previous methods. 

Let  be an approximate  root of  and let  be the correct root 

which implies that  .  

By  Taylor’s theorem  neglecting second  and higher order terms  

 

 
Substituting this in  we get 

 

 is a better approximation than   

Successive approximations are given by 
 

     
 

Problem:-  

Find by Newton’s method, the real root of the equation  Correct to 

three decimal places. 

Sol: Let  

 Then  and  

 So root of  lies between 0 and 1 

 It is near to 1. so we take  and  

  By Newton’s Rule 

 First approximation  

             

  

 The second approximation  
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  Required root is 0.853 correct to 3 decimal places. 

 
MATLAB Program for Newton-Raphson method 

 

function c=newtonR(f,df,a) 
   

 if(df(a)==0) disp('differentiation of a is zero');  
  else 
    c=a-f(a)/df(a); 
    while abs(f(c)) > 1e-7 
       a=c; 
       c=a-f(a)/df(a); 
    end 
 end 
 

 
Output: 
 

>> f=@(x)x^3-x-4; 

>> df=@(x)3*x^2-1; 

>> newtonR(f,df,1) 

 

ans = 

 

    1.7963 

 
 
 

 

 
 

 

 

 
 

 

 
 

 

0.0672
0.8679

4.4491

0.8528

 







UNIT-III 

 
INTERPOLATION 

 

Objectives: 

 Develop an understanding of the use of numerical methods in modern 

scientific computing. 

 To gain the knowledge of Interpolation 

 
Syllabus: 

Pre-requisite : Commands of MATLab  

Interpolation – Introduction - Finite differences - Forward Differences - 

Backward differences - Central differences - Newton Interpolation formulae - 
Gauss Interpolation formulae - Lagrange’s interpolation. 

 

Learning Outcomes: 
Student should be able to 

 Know about the Interpolation, and Finite Differences. 
 Utilize the Newton’s formulae for interpolation.  

 Utilize the Gauss formulae for interpolation.  

 Operate Lagrange’s Interpolation formula. 

 
 

 

Introduction: 
Consider the statement y =f(x) , x0 xxn we understand that we can find 

the value of y, corresponding to every value  of x in the range x0 xxn. If the 

function f(x) is single valued and continuous and is known explicitly then the 

values of f(x) for certain values of x like x0, x1,…….xn can be calculated. 
Now the problem is, if we are given the set of tabular values 

    
 Satisfying the relation y = f(x) and the explicit definition of f(x) is not 

known, is it possible to find a simple function say )(x such that f(x) and )(x  

agree at the set of tabulated points. This process of finding )(x  is called 

interpolation. If )(x   is a polynomial then the process is called polynomial 

interpolation and )(x  is called interpolating polynomial. In our study we are 

concerned with polynomial interpolation. 

Interpolation is the process of deriving a simple function from a set of 
discrete data points so that the function passes through all the given data 

points (i.e. reproduces the data points exactly) and can be used to estimate 

data points in-between the given ones. 
 

Finite Differences: 



Here we introduce forward, backward and central differences of a 

function y = f(x). These differences play a fundamental role in the study of 
differential calculus, which is an essential part of numerical applied 

mathematics. 

 

1. Forward Differences: 
 Consider a function y = f(x) of an independent variable x. let 

y0,y1,y2…….yn be the values of y corresponding to the values x0,x1,x2…….xn of x 

respectively. Then the differences y1-y0, y2 – y1.............. are called the first 

forward differences of y, and we denote them by ,........, 10 yy    

that is 0 1 0 1 2 1 2 3 2, , ,...........y y y y y y y y y          

In general   1 0,1,2,3,...... 1r r ry y y where r n       

 Here the symbol   is called the forward difference operator.  

The second forward differences and are denoted by 2 2 2

0 1 2, , ,...........y y y    

that is  

   
In general 2

1 0,1,2,3,...... 2r r ry y y where r n       

similarly, the kth forward differences are defined by the formula.  
1 1

1 , 0,1,2,..... 1,2,...... 1k k k

r r ry y y where r n k and k n 

         

 The symbol k  is referred as the kth forward difference operator. 

If f(x) is a function of x and h be the increment in x then forward 

difference of f(x) is defined as ( ) ( ) ( )f x f x h f x     

Forward Difference Table: 
  The forward differences are usually arranged in tabular columns 

as shown in the following table called a forward difference table 

 
 

Values 

of x 

Values 

of y 

First order 

differences 

Second order 

differences 

Third order 

differences 

     

     

     

     

     

     

     

 

2. Backward Differences: 

Consider a function y = f(x) of an independent variable x. let 

y0,y1,y2…….yn be the values of y corresponding to the values x0,x1,x2…….xn of x 



respectively. Then the differences y1-y0, y2 – y1.............. are called the first 

backward differences of y, and we denote them by 1 2, ,........y y    

that is  1 1 0 2 2 1 3 3 2, , ,...........y y y y y y y y y          

In general   1 1,2,3,......r r ry y y where r n      

 Here the symbol   is called the backward difference operator.  

The second backward differences and are denoted by 2 2 2

2 3 4, , ,...........y y y    

That is  
 

In general 2

1 2,3,......r r ry y y where r n     

similarly, the kth backward differences are defined by the formula as 
1 1

1, , 1,..... 1,2,...... 1k k k

r r ry y y where r k k n and k n 

        

 The symbol k  is referred as the  kth backward difference operator. 

If f(x) is a function of x and h be the increment in x then bckward 

difference of f(x) is defined as ( ) ( ) ( )f x f x f x h     

   

Backward Difference Table:- 

X Y    

  
   

  
 

  

  
 

 
 

  
 

 
 

  
 

  
  

 
  

  
   

 
 

3.Central Differences: 

 Consider a function y = f(x) of an independent variable x. let 
y0,y1,y2…….yn be the values of y corresponding to the values x0,x1,x2…….xn of x 

respectively. We define the first central differences  

   as follows  

   

   
The symbol  is called the central differences operator. This operator is a linear  

operator 

Comparing expressions (1) above with expressions earlier used on forward and 

backward differences we get 

 



  In general   

 The first central differences of the first central differences are called the 

second central differences and are denoted by  

  Thus  

   
 Higher order central differences are similarly defined. In general the nth 
central differences are given by  

for odd  

for even  

while employing for formula (4) for , we use the notation  

If y is a constant function, that is if  a constant, then  

If f(x) is a function of x and h be the increment in x then forward 

difference of f(x) is defined as ( )
2 2

h h
f x f x f x

   
      

   
 

 

Central Difference Table: 

 
 

      
  

 
   

  
 

 
  

  
 

 
 

 

  
 

 
 

 
  

 
 

 
 

  
 

 
  

  
 

   

  
    

                                                                                                                                                                    
 

Note: The forward difference operator  , backward difference operator  and 

central difference operator  are linear operators. 

 

E-operator: The shift operator E is defined by the equation 1r rEy y  . This 

shows that the effect of E is to shift the functional value ry to the next higher 

value 1ry  . This is also called forward shift operator. 

A second operation with E gives 2

1 2( )r r r rE y E Ey Ey y      

Generalizing k

r k rE y y   



Inverse operator E-1:  Inverse operator 1E   is defined as 1

1.r rE y y

  This is also 

called backward operator.  

In general k

r r kE y y

  

Relationship Between and E  

We have  

 
Some more relations 

   
Note: We can easily establish the following relations 

        
Theorem: If  f(x) is a polynomial of degree n and the values of x are equally 

spaced then ( )n f x  is constant. 

Note: As ( )n f x  is a constant, it follows that 1 2( ) 0, ( ) 0,........n nf x f x     The 

converse of above result is also true that is, if ( )n f x  is tabulated at equal 

spaced intervals and is a constant, then the function f(x) is a polynomial of 

degree n. 
Q. 

 



 
Q.Find the missing term in the following data 

X 0 1 2 3 4 

Y 1 3 9 - 81 

  Why this value is not equal to . Explain 

Sol. Consider  

  
 Substitute given values we get 

  

 From the given data we can conclude that the given function is . To 

find , we have to assume that y is a polynomial  function, which is not so. 

Thus we are not getting  

 

 
Q.Evaluate  

  
Sol. Let h be the interval of differencing  



   

   

     
  

 
 

Proceeding on, we get  

 
Newton’s Forward Interpolation Formula: 

Let y=f(x) be a polynomial of degree n and taken in the following form 

 
This polynomial passes through all the points (for i = 0 to n. Therefore, we can 

obtain the 'iy s by substituting the corresponding 'ix s  as  

   

 Let ‘h’ be the length of interval such that  represent  

   

 This implies  
  From (1) and (2), we get 



  

 Solving the above equations for , we get  

 

  
 Similarly, we can see that 

 

  

 If we use the relationship  

 Then  

   
 Equation (3) becomes 



  
 

Q. Find the melting point of the alloy containing 54% of lead, using appropriate 

interpolation formula  

Percentage of 
lead(p) 

50 60 70 80 

Temperature  205 225 248 274 

 

Sol. The difference table is  
 

x Y    

50 205    

  20   

60 225  3  

  23  0 

70 248  3  

  26   

80 274    

  

Let temperature =  

    
 By Newton’s forward interpolation formula 

   
 Melting point = 212.6 

 

 
Q. Consider the following table of values 



 
Sol. 

 

 

 

 
 

 

MatLab Code for Newton’s Forward Interpolation Formula: 
 

 

function fp = newtonint( x,y,p ) 

%To find a function value y at certain value of x when we have %x values and 
their corresponding y values 

% By using Newton’s Forward Interpolation Method 

% x is data for x 
% y is data for y 

% p is a point where we have to calculate y value 

n=length(x); 
for i= 1:n 



    diff(i,1)=y(i); 

end 
for j=2:n 

    for i=1:n-j+1 

        diff(i,j)=diff(i+1,j-1)-diff(i,j-1); 
    end 

end 

fp=y(1); 

h=x(2)-x(1); 
u=(p-x(1))/h; 

for i=1:n-1 

    factor=1; 
    for j=0:i-1 

        factor=factor*(u-j); 

    end 
    fp=fp+factor*diff(1,i+1)/factorial(i); 

end 

end 
 

Newton’s Backward Interpolation Formula: 

If we  consider 

 

and impose the condition that y and  should agree at the tabulated points 

  
We obtain   

 

 Where     
 This uses tabular values of the left of yn. Thus this formula is useful 

formula is for interpolation near the end of the tabular values. 

Q. The sales for the last five years is given in the table below. Estimate the 

sales for the year 
1979 

 

 
Sol. 



 

 

 
 

Q. Consider the following table of values 

 
Use Newton’s Backward Difference Formula to estimate the value of f(1.45). 

 
 

 

 
 

 

Sol. 



 

 

 

 
 
MatLab Code for Newton’s Backward Interpolation Formula: 

 

function yval=nbdi(xd,yd,xval) 
n=length(xd); 

bdt(:,1)=xd'; 

bdt(:,2)=yd'; 
for j=3:n+1 

     for i=n:-1:j-1 

          bdt(i,j)=bdt(i,j-1)-bdt(i-1,j-1); 

     end 
end 

bdt 

h=xd(2)-xd(1) 
p=(xval-xd(n))/h 

c=ones(1,n); 

for r=1:n-1 
     c(r+1)=prod(p:1:p+r-1)/factorial(r); 

end 

terms=bdt(n,2:n+1).*c; 



yval=sum(terms); 

fprintf('\n The approximated y value at given x=%f is: %f',xval,yval) 
end 

Gauss Forward Interpolation Formula: 

Gauss forward interpolation formula is given by  
 

2 3 4

0 0 1 1 2

5

2

( 1) ( 1) ( 1) ( 1) ( 1)( 2)

2! 3! 4!

( 2)( 1) ( 1)( 2)
.....

4!

p

p p p p p p p p p
y y p y y y y

p p p p p
y

  



     
        

   
    

Where   
    

 
 

 The value p is measured forwardly from the origin and 0<p<1 

 The above formula involves odd differences below the central horizontal 
line and even differences on the line. This is explained in the following 

figure. 

 
Q. Find f(30) from the following table values using Gauss forward difference 
formula: 

x: 21 25 29 33 37 

F(x): 18.4708 17.8144 17.1070 16.3432 15.5154 

 

Sol: 

The difference table is 

x f f 2f 3f 4f 

21 18.4708     

  -0.6564    

25 17.8144  -0.0510   

  -0.7074  -0.0054  

29 17.1070  0.0564  -0.0022 

  -0.7638  -0.0076  



33 16.3432  -0.0640   

  -0.8278    

37 15.5154     

Let       given x=30 and h=4 then   
    

 
 

     

 
      

Gauss forward interpolation formula is given by  

 

2 3 4

0 0 1 1 2

( 1) ( 1) ( 1) ( 1) ( 1)( 2)
.....

2! 3! 4!
p

p p p p p p p p p
y y p y y y y  

     
         

 

Therefore f (30) = 16.9217  

MatLab Code for Gauss Forward Interpolation Formula: 
 

function [ yval ] = gauss_p( xd,yd,xp ) 

n=length(xd); 
if(length(yd)==n)  

tbl=yd'; 

for j=2:n 
    for i=1:n-j+1 

        tbl(i,j)=tbl(i+1,j-1)-tbl(i,j-1); 

    end 

end 
tbl 

h=xd(2)-xd(1); 

if rem(n,2)==0 
    k=n/2+1; 

else 

    k=n/2+0.5; 
end 

 

p=(xp-xd(k))/h; 
 

pt=cumprod([1,p-(0:n-3)]); 

 

dt=[tbl(k,1),tbl(k,2),tbl(k-1,3:n-1)+tbl(k-1,4:n)]./factorial(0:n-2); 
 

yval=sum(pt.*dt); 

 
end 

 

Gauss Backward Interpolation Formula: 
Gauss backward interpolation formula is given by  



2 3 4

0 0 1 1 2

5

2

( 1) ( 1) ( 1) ( 2)( 1) ( 1)

2! 3! 4!

( 2)( 1) ( 1)( 2)
.....

4!

p

p p p p p p p p p
y y p y y y y

p p p p p
y

     
        

   
  

 

Where   
    

 
 

 The value p is measured forwardly from the origin and -1<p<0.  

 

 The above formula involves odd differences above the central horizontal 

line and even differences on the line.  

 
 

Q. From the following data find y when x=38 by using Gauss backward 

interpolation formula 

x 30 35 40 45 50 

y 15.9 14.9 14.1 13.3 12.5 

 

Sol: The difference table is 

x y y  2 y  3 y  4 y  

30 15.9     

  -1    

35 14.9  0.2   

  -0.8  -0.2  

40 14.1  0  0.2 

  -0.8  0  

45 13.3  0   

  -0.8    

50 12.5     

 

Let       given x=38 and h=5 then   
    

 
 

     

 
      

Gauss forward interpolation formula is given by 

2 3 4

0 0 1 1 2

5

2

( 1) ( 1) ( 1) ( 2)( 1) ( 1)

2! 3! 4!

( 2)( 1) ( 1)( 2)
.....

4!

p

p p p p p p p p p
y y p y y y y

p p p p p
y

     
        

   
  

 



Therefore y(38)=14.4245 

 
Lagrange’s Interpolation Formula: 

 Let  be the  values of x which are not necessarily 

equally spaced. Let  be the corresponding values of ( )y f x  let the 

polynomial of degree n for the function ( )y f x  passing through the  

points                                                 be in 

the following form 

 

Where  an are constants 

 Since the polynomial passes through , . 

The constants can be determined by substituting one of the values of 

 in the above equation 

Putting  in (1) we get,  

 

Putting  in (1) we get,  

 

Similarly substituting  in (1), we get 

 

Continuing in this manner and putting  in (1) we get 

 

Substituting the values of , we get  

 

 
  

Q . Using Lagrange's formula calculate  from the following table 

 x 0 1 2 4 5 6 



 
1 14 15 5 6 19 

Sol. Given  

  
  

From lagrange’s interpolation formula 

  

  
 

 

 
 

 

 

Here  then 

  

                   

                      

 

 

 

 
 

MatLab Code for Lagrange’s Interpolation Formula: 
 

 

function [ yval ] = lagrange(xd,yd,x) 

%To find a function value y at certain value of x when we have x values and 



%their corresponding y values by using Lagranges Interpolation Method 

% xd is data for x 
% yd is data for y 

% x is a point where we have to calculate y value  

n=length(xd); 
if(length(yd)==n) 

   p=zeros(1,n); 

   for i=1:n 

       temp=xd; 
       temp(i)=[]; 

       p(i)=prod((x-temp)./(xd(i)-temp)); 

   end 
   yval=sum(p.*yd); 

   fprintf('\n The value of y at x=%f is %f',x,yval) 

else 
   error('xd and yd must be of same size'); 

end 

 
 

 

 

 Assignment-Cum-Tutorial Questions 
 

Section-A 

Objective Questions: 
 

1. A linear version of the Lagrange’s interpolation formula for f(x) is   [ ]       

 a)   b)  

 c)  d)  

 

2. The following is used for unequal interval of x values   [ ] 
 a) Lagrange’s formula 

b) Newton’s forward interpolation formula 

 c) Newton’s backward interpolation formula 
d) Gauss forward interpolation formula 

3. The  order difference a polynomial of nth degree is   [ ] 
 a) polynomial of nth degree   b) zero 

 c) polynomial on first degree   d) constant 

 

X 1 2 3 4 



4.   

 
 

        If x=2.5 then p=        [ ] 

 a) 1.5   b) 1   c) 2.5   d) 2 
5. 

 

 

         When  p=0.6, x=        [ ] 
 a) 0.16  b) 0.26  c) 0.1   d) 3.0 2.  

 

6. Relation between Backward  and Shifting operator is ________________. 
 

7. When do we apply Lagrange’s interpolation? 

8.        If  then        [ ] 
 a)  1  b) 2  c)  0  d) 3 

9.         [ ] 

 a)   b)   c)  d)  

10.         [ ] 

 a)   b)   c)   d)  

 

11.  

X 0 1 2 

F(x) 7 10 13 

    
            By  Newton’s forward formula f(2.5)=    [ ] 

 a) 15.25  b) 16.75  c) 16.25  d)16.108. 

 
 12. Using Lagrange’s interpolation, find the polynomial through (0,0),(1,1) and 

(2,2). 

 

13.  cosx = _______________________. 

 

 
Section-B 

     Subjective Questions 

1. Prepare a MATLAB code to construct a forward difference table for the 
given data. 

2. Prepare a MATLAB code to construct a backward difference table for the 

given data. 

f(x) 1 4 27 64 

X 0.1 0.2 0.3 0.4 

f(x) 1.005 1.02 1.045 1.081 



3. Certain corresponding values of x and log x are (300, 2.4771), (304, 

2.4829), (305, 2.4843)   and (307, 2.4871). Find log 301. 
4. If the interval of differencing unity prove that 

 
5. Find a cubic polynomial in x which takes on the values -3, 3, 11, 27, 57 

and 107, when x=0,  1, 2, 3, 4 and 5 respectively. 

6. Using Newton’s forward interpolation formula, for the given table of values 

X 1.1 1.3 1.5 1.7 1.9 

 
0.21 0.69 1.25 1.89 2.61 

        Obtain the value of f(x) when x= 1.4. 

7. Develop a MATLAB code to find y value corresponding to some x value by 
using Newton’s forward difference interpolation formula. 

8. The population of a town in the decimal census was given below. Estimate 

the population for the 1895 

 Year x 1891 1901 1911 1921 1931 

Population of y 46 66 81 93 101 

 

9. Find the cubic polynomial which takes the values 

y(0)=1,y(1)=0,y(2)=1,y(3)=10 
10. Using Newton's backward formula find the value of sin38 ? 

x:        0           10          20                30          40 

sin x:       0       .17365     .34202     .50000     .64279 
11. Develop a MATLAB code to find y value corresponding to some x value by 

using Newton’s backward difference interpolation formula. 

12. Fit a polynomial of degree three which takes the following values 
x:  3    4    5       6 

        y:  6    24  60    120 

13. Using Newton’s forward formula, find the value of f(1.6) if 

X 1 1.4 1.8 2.2 2.6 

y 3.49 4.82 5.96 6.5 8.4 

 

14. Find log 58.75 from the following data: 

X 40 45 50 55 60 65 

Log x 1.60206 1.65321 1.69897 1.74036 1.77815 1.81291 

Using Newton’s Backward Interpolation formula. 

 
15. Write a MATLAB program to implementation of Gauss backward difference 

interpolation. 

16. Using Gauss forward formula find y(3.3) from the following data  

X 1 2 3 4 5 

Y 15.30 15.10 15.0 14.5 14.0 

 



17. Develop a MATLAB code to find  y value corresponding to some x value by 

using Gauss backward difference interpolation formula. 
18. Write a MATLAB program to implementation of Lagrange’s interpolation.  

19. Find the Lagrange’s interpolating polynomial and using it find y when x = 

10, if the values of x and y are given as follows: 

x 5 6 9 11 

y 12 13 14 16 

 

20. Find the number of students who got marks between 40 and 45 
Marks   :  30-40    40-50    50-60   60-70   70-80 

No. of students :   31           42       51         35         31 

 

21. The area A of a circle of diameter d is given below: 
            d:   80          85            90           95            100 

          A:   5026     5674        6362       7088         7854 

          Find approximately the areas of the circles of diameters 82 and 91. 
Section-C 

     GATE/IES/Placement Tests/Other competitive examinations   

1. Evaluate ∆10(1-x)(1-2x)(1-3x)..........(1-10x) taking h=1 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 



UNIT-IV 

NUMERICAL DIFFERENTIATION AND INTEGRATION 
 

Objectives: 

 To understand the concepts of numerical differentiation and integration.  

 

Syllabus: 

Pre-requisite : Commands of MATLab  

Approximation of derivative using Newton’s forward and backward formulae - 

Integration using Trapezoidal and Simpson’s rules. 

 

Learning  Outcomes:  

At the end of the unit, Students will be able to  

 Utilize numerical techniques to evaluate derivatives at a point. 

 Utilize numerical techniques to evaluate definite integrals. 

 Calculate the area and slope of a given curve. 
 

 
Introduction:  

 

 Suppose a function y = f(x) is given by a table of values (xi, yi). The 

process of computing the derivative 
dy

dx
for some particular value of x is called 

Numerical differentiation.  

 

Derivatives using Newton’s forward difference formula: 

 



 

 

 

 



 

 

 

 
 

 

 



Q. Find 
2

2
51

dy d y
and at x

dx dx
  from the following data.  

x 50 60 70 80 90 

y 19.96 36.65 58.81 77.21 94.61 

 

Solution: Here h = 10. To find the derivatives of y at x = 51 we use Newton’s 

Forward difference formula taking the origin at a = 50. 

We have 0 51 50
0.1

10

x x
p

h

 
   

     2 3 2

2 3 4

0 0 0 0

51 0.1

3 6 2 4 18 22 62 11
...

2! 3! 4!x p

p p p p ppdy dy
y y y y

dx dx h 

        
             
    
 

 

The difference table is given by 

x 
50

10

x
p


  y y  2 y  3 y  4 y  

50 0 19.96     

   16.69    
60 1 36.65  5.47   

   22.16  -9.23  

70 2 58.81  -3.76  11.99 
   18.40  2.76  

80 3 77.21  -1.00   

   17.40    

90 4 94.61     

 

 
 

   
 

     
3 2

2

0.1

4 0.1 18 0.1 22 0.1 60.2 1 3 0.1 6 0.1 21
16.69 5.47 9.23 11.99 ...

10 2 6 24p

dy

dx 

                            

 

 

 
1

16.69 2.188 2.1998 1.9863 1.0316
10

      

 
 22

2 3 4

0 0 02 2

0.1

6 18 111
1 ...

12
p

p pd y
y p y y

dx h


   
         
    

 

   
   

2
6 .1 18 .1 111

5.47 0.1 1 9 23 11.99
100 12

   
        

 
  

 

 
1

5.47 8.307 9.2523
100

    

=0.2303. 



Q. The population of a certain town is shown in the following table  

Year x 1931 1941 1951 1961 1971 

Population y 40.62 60.80 79.95 103.56 132.65 

 

Find the rate of growth of the population in 1961. 

Solution. Here h = 10 Since the rate of growth of population is 
dy

dx
we have to 

find 
dy

dx
at x = 1961, which lies nearer to the end value of the table. Hence we 

choose the origin at x = 1971 and we use  Newton’s backward interpolation 

formula for derivative. 

 

     2 3 2

2 3 4

4 4 4 4

3 6 2 2 9 11 32 11
...

2 6 12

p p p p ppdy
y y y y

dx h

     
         
 
 

 

Where 0 1961 1971
1

10 10

x x
p

 
     

The backward difference table 

x Year y Population y  2 y  3 y  4 y  

1931 40.62     
  20.18    

1941 60.80  -1.03   

  19.15  5.49 -4.47 
1951 79.95  4.46   

  23.61  1.02  

1961 103.56  5.48   
  29.09    

1971 132.65     

 

 
         

 

2 3 2

1

3 1 6 1 2 2 1 9 1 11 1 31 1
29.09 5.48 1.02 4.47

10 2 6 12p

dy

dx 

             
                     

  

 

 
1

29.09 2.74 0.17 0.3725
10

     

 
1

26.5525 2.6553
10

   

 

The rate of growth of the population in the year 1961 is 2.6553. 

 

 



MATLAB Code to numerical differentiation by using Newton’s forward 

difference Interpolation: 

function[d1val,d2val]=derbynfdi(xd,yd,xval) 

n=length(xd); 
syms p; 

fdt=zeros(n,n+1); 

fdt(:,1)=xd'; 
fdt(:,2)=yd'; 

for j=3:n+1 

    for i=1:n-j+2 

        fdt(i,j)=fdt(i+1,j-1)-fdt(i,j-1); 
    end 

end 

fdt 
temp=[1,cumprod(p-(0:n-2))]; 

a=diff(temp); 

b=diff(a); 
h=xd(2)-xd(1) 

p=(xval-xd(1))/h; 

ap=eval(a); 
bp=eval(b); 

c=fdt(1,2:n+1)./factorial(0:n-1); 

d1val=sum(ap.*c)/h; 

d2val=sum(bp.*c)/(h*h); 
fprintf('\n the approximated value of first derivative of y at given x value %f is 

%f ',xval,d1val) 

fprintf('\n the approximated value of second derivative of y at given x value %f 
is %f ', xval,d2val) 
 

MATLAB Code to numerical differentiation by using Newton’s backward 

difference Interpolation: 

function[d1val,d2val]=derbynbdi(xd,yd,xval) 

n=length(xd); 

syms p; 
bdt=zeros(n,n+1); 

bdt(:,1)=xd'; 

bdt(:,2)=yd'; 
for j=3:n+1 

    for i=n:-1:j-1 

        bdt(i,j)=bdt(i,j-1)-bdt(i-1,j-1); 
    end 

end 

bdt; 
temp=[1,cumprod(p+(0:n-2))]; 

a=diff(temp); 



b=diff(a); 

h=xd(2)-xd(1); 
p=(xval-xd(n))/h; 

ap=eval(a); 

bp=eval(b); 
c=bdt(n,2:n+1)./factorial(0:n-1); 

d1val=sum(ap.*c)/h; 

d2val=sum(bp.*c)/(h*h); 

fprintf('\n the approximated value of first derivative of y at given x value %f is 
%f ',xval,d1val) 

fprintf('\n the approximated value of second derivative of y at given x value %f 

is %f ', xval,d2val) 
 

Numerical Integration : 

 

 

 



 

 

 

 

 



 
 

Simpson’s 1/3rd Rule: 

 

 

 



 

 

 

 
 



 

 

   
 

Memorise: 

 

Trapezoidal Rule: 

 0 1 2 3 1( ) 2( ....... )
2

( 2( ))
2

b

n n

a

h
f x dx y y y y y y

h
sumof first and last ordinates sumof remaining ordinates

      

 



 

 

Simpson’s 1/3rd Rule: 

 0 2 4 6 2 1 3 5 1( ) 2( ....... ) 4( ....... )
3

( 2( ) 4( ))
2

b

n n n

a

h
f x dx y y y y y y y y y y

h
sumof first and last ordinates sumof evenordinates sumof odd ordinates

            

  



Note: For Simpsons 1/3rd Rule number of subintervals should be even. 

 

 

 



Simpson’s 3/8th Rule: 

 0 3 6 9 3 1 2 4 5 2 1( ) 2( ....... ) 3( ....... )
3

( 2( 3 ) 3( ))
2

b

n n n n

a

h
f x dx y y y y y y y y y y y y

h
sumof first and last ordinates sumof multiples of ordinates sumof remaining ordinates

               

  



Note: For Simpsons 3/8th Rule number of subintervals should be multiple of 3. 

Q .Evaluate 
1

0 1

dx

x  using (i) Trapezoidal rule (ii) Simpson’s one third rule (iii) 

Simpson’s three eight rule. Take 
1

6
h  for all cases. 

Solutions: Here 
1

6
h  , Let  

1
( )

1
y f x

x
 


. The values of f(x) for the points of 

subdivisions are as follows: 

x 0 
1

6
 

2

6
 

3

6
 

4

6
 

5

6
 1 

1

1
y

x



 1 0.8571 0.75 0.6667 0.6 0.5455 0.5 

 

 

(i) Tapezoidal rule  

   
1

0 6 1 2 3 4 5
0

2
1 2

dx h
y y y y y y y

x
          

   
1

1 0..5 2 0.8571 0.755 0.6667 0.6 0.5455
12

       ;  

=0.6949. 

 
(ii) Simpson’s one third rule 

 

                  
   

1

0 6 2 4 1 3 5
0

2 ) 4(
1 3

dx h
y y y y y y y

x
        

 

                
   

1
1 0.5 2 0.75 0.6) 4(0.8571 0.6667 0.5455

18
       ;  

= 0.6932. 

 

(iii) Simpson’s three eight rule 
 

                      
1

0 6 1 2 4 5 3
0

3
3 2

1 8

dx h
y y y y y y y

x
          



          
1

1 0.5 3 0.8571 0.75 0.6 0.5455 2 0.6667
16

       ;  

 

                = 0.6932. 

 

 

MATLAB Code to numerical integration by using Trapezoidal Rule: 

function intval=trapezoidal(f,a,b,n) 

h=(b-a)/n; 
x=linspace(a,b,n+1); 

y=f(x) 

intval=(h/2)*(y(1)+y(n+1)+2*sum(y(2:n))); 

fprintf('\nthe approximate value of given integral is %f',intval) 
 

MATLAB Code to numerical integration by using Simpson’s 
1

3
rd  Rule: 

function intval=simpsons1(f,a,b,n) 

if rem(n,2)==0 

   h=(b-a)/n; 
   x=linspace(a,b,n+1); 

   y=f(x); 

   intval=(h/3)*(y(1)+y(n+1)+2*sum(y(3:2:n-1))+4*(sum(y(2:2:n)))); 
   fprintf('\nthe approximate value of given integral is %f',intval) 

else 

   error('number of subintervals n must be even') 

end 

MATLAB Code to numerical integration by using Simpson’s 
3

8
rd  Rule: 

function intval=simpsons2(f,a,b,n) 

if rem(n,3)==0 
   h=(b-a)/n; 

   x=linspace(a,b,n+1); 

   y=f(x); 
   intval=(3*h/8)*(y(1)+y(n+1)+2*sum(y(4:3:n-2))+3*(sum(y)-y(1)-y(n+1)- 

sum(y(4:3:n-2)))); 

   fprintf('\n the approximate value of given integral is %f',intval) 
else 

   error('number of subintervals n must be even') 

end 
 

 

 

 



Assignment-Cum-Tutorial Questions 

 
Section-A 

Objective Questions: 

 
1. By Newton’s forward interpolation formula 

_________________________________________
dy

dx
   

2

2
_________________________________________

d y

dx
  

2. By Newton’s backward interpolation formula 

_________________________________________
dy

dx
   

2

2
_________________________________________

d y

dx
  

3. Trapezoidal rule to find definite integral is_____________________ 

4. Simpson’s 1/3rd  rule to find definite integral is_____________________ 

5. Simpson’s 3/8th  rule to find definite integral is_____________________ 

6. If we put n = 2 in a general quadrature formula, we get   [       ] 

(a) Trapezoidal rule  (b) Simpson’s 1/3rd rule    

(c) Simpson’s 3/8th rule   (d) Boole’s rule 

7. In Simpson’s 1/3rd rule the number of subintervals should be [       ] 

(a) Even     (b) odd  

(c) multiples of 3’s   (d) more than ‘n’ interval 

8. If the distance d(t) is traversed by a particle in the ‘t’ sec and d(0) = 0, d(2) 

= 8, d(4) = 20 and d(6) = 28, then its velocity in cm after 6 secs is [       ] 

          (a) 1.67  (b) 16.67 (c) 2   (d) 2.003 

9. The formula 







 .......

3

1

2

11
0

3

0

2

0 yyy
h

is used only when the point x is 

at           [       ] 

(a) end of the tabulated set (b) middle of the tabulated set 

(c) Beginning of tabulated set (d) none of these 

10. To increase the accuracy in evaluating a definite integral by Trapezoidal 

rule, we should take ______________________ 

11. Values of y = f(x) are known as x = x0, x1 and x2. Using Newton’s forward 

integration formula, the approximate value of 
0xxdx

dy











is 

________________________________ 

12. Numerical differentiation gives       [       ] 

 (a) exact value       (b) approximate value 



 (c) no result    (d) negative value 

13. The general quadrature formula is      [       ] 

(a) always same               (b)depends upon interpolation formula  

(c) not easy to derive                (d) is also given approximate result 

14. For n =1in quadrature formula, 
1

0

)(

x

x

dxxf  equals to  [       ] 

(a)  10
2

ff
h

      (b)  10 ff       (c)  10
2

ff
h

      (d)  10
4

ff
h

  

15. To apply, Simpson’s 1/3rd rule, always divide the given range of 

integration into ‘n’ subintervals, where n is    [       ] 
(a) even          (b) odd      (c) 1,2,3,4       (d) 1,3,5,7 

16. The process of calculating derivative of a function at some particular 

value of the independent variable by means of a set of given values of 

that function is         [       ] 
(a) Numerical value  (b) Numerical differentiation  

(c) Numerical integration   (d) quadrature 

17. While evaluating definite integral by Trapezoidal rule, the accuracy can 
be increased by         [       ] 

(a) h =4              (b) even number of sub-intervals 

(c) multiples of 3                      (d) large number of sub-intervals 
 

Section-B 

     Subjective Questions 
 

1. A curve is expressed by the following values of x and y. Find the slope at 

the point x =1.5 

 

x 0.0 0.5 1.0 1.5 2.0 

y 0.4 0.35 0.24 0.13 0.05 

2. The population of a certain town is given below. Find the rate of growth of 

the population in 1961: 
  

Year 1931 1941 1951 1961 1971 

Population 40.62 60.80 71.95 103.56 132.65 

3. In a machine a slider moves along a fixed straight rod. Its distance x cms 
along the rod is given below for various values of time ‘t’ seconds. Find the 

velocity and acceleration of the slider when t = 0.3 

    
t(sec) 0 0.1 0.2 0.3 0.4 0.5 0.6 

x(cms) 30.13 31.62 32.87 33.64 33.95 33.81 33.24 

4. The velocity of a train which starts from rest is given by the following 

table being reckoned in minutes from the start and speed in miles per 

hour 
 



Minutes 2 4 6 8 10 12 14 16 18 

Miles per 
hour 

10 18 25 29 32 20 11 5 2 

  

Estimate approximately the total distance travelled in 20 minutes. 
5. The distance covered by an athlete for the 50 meter is given in the 

following table 

 

Time(sec) 0 1 2 3 4 5 6 

Distance(meter) 0 2.5 8.5 15.5 24.5 36.5 50 

  Determine the speed of the athlete at t = 5 sec. correct to two decimals. 

6. A curve is drawn to pass through the points given by following table: 

x 1 1.5 2.0 2.5 3 3.5 4.0 

y 2 2.4 2.7 2.8 3 2.6 2.1 

 Find the slope of the curve at x=1.25. 

7. Write a MATLAB code to find derivatives at a point by using Newtons 
forward interpolation formula. 

8. Prepare a MATLAB code to find derivatives at a point by using Newtons 

backward interpolation formula. 

9. Evaluate 


2

0

3

dxe x

 using Simpson’s rule taking h=0.25 

10. A river is 80 meters wide. The depth 'd’ in meters at a distance x from the 

bank is given in the following table. Calculate the cross section of the 

river using Trapizoidal rule. 

x  10 20 30 40 50 60 70 80 

d(x) 4 7 9 12 15 14 8 3 

11. Compute the value of the definite integral   
5.2 5.2

4 4

log lnxdxor xdx   using 

i.Trapezoidal Rule  ii. Simpson’s 1/3rd Rule and iii. Simpson’s 3/8th Rule. 

12. Create a MATLAB function file to find a definite integral by using 
Trapezoidal rule. 

13. Design a MATLAB code to find a definite integral by using Simpson’s 

1/3rd  rule. 

14. Write  a MATLAB function file to find a definite integral by using 
Simpson’s 3/8th  rule. 

 

Section-C 
     GATE/IES/Placement Tests/Other competitive examinations 

 

1. If f(2) = 5, f(4) = 8, f(6) = 10, and f(8) = 16 then                        



2. Using Simpson’s 1/3rd rule, find the value of the integr  

4.1

2.0

)log(sin dxexx x

by taking 6 sub-intervals. 

3. Minimum number of subintervals required to evaluate the integral 
2

1

1
dx

x

by using Simpson’s 1/3rd rule so that the value is corrected up to 4 

decimal places. 

4. The following table gives the velocity v of a particle at time ‘t’ 

 
t (seconds) 0 2 4 6 8 10 12 

v meters per 
second 

4 6 16 34 60 94 136 

 

  Find (i) the distance moved by the particle in 12 seconds and also (ii) the 

acceleration at t = 2 sec. 

5. A rocket is launched from the ground. Its acceleration is registered 
during the first 80 seconds and is given in the table below. Using 

Simpson’s 1/3rd rule, find the velocity of the rocket at t= 80 seconds. 

 
t sec 0 10 20 30 40 50 60 70 80 

f(cm/sec2) 30 31.63 33.34 35.47 37.75 40.33 43.25 46.69 50.67 

 
 

-----------------@-@-@-@-@---------------- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT–V: Numerical Solutions of Ordinary Differential Equations 

Pre-requisite : Commands of MATLab 

Objectives: 

• To the numerical solutions of  a first ordered Ordinary Differential Equation together with initial 

condition. 

 

Syllabus: 

Taylor’s Series Method - Euler Method - Modified Euler Method - Runge – Kutta Fourth order Method. 

Subject Outcomes:  

At the end of the unit, Students will be able to   

• solve Ordinary Differential equations using Numerical methods. 

• implement the numerical methods in Matlab in order to solve Ordinary Differential equations.                                                   

 

The important methods of solving ordinary differential equations of first order numerically are as 

follows 

 Taylors series method 

 Euler’s method 

 Modified Euler’s method of successive approximations 

 Runge- kutta method 

To describe various numerical methods for the solution of ordinary differential equations we consider 

the general 1st order differential equation 

dy/dx = f(x,y) ------- (1) 

with the initial condition y(x0) = y0 

The methods will yield the solution in one of the two forms:  

i) A series for y in terms of powers of x, ,from which the value of y can be obtained by direct 

substitution. 



ii ) A set of tabulated values of y corresponding to different values of x. 

 

TAYLOR’S SERIES METHOD 

To find the numerical solution of the differential equation  

 (1) 

With the initial condition  (2) 

can be expanded about the point  in a Taylor’s series in powers of   as 

(3) 

In equation3,  is known from Initial Condition . The remaining coefficients 

etc are obtained by successively differentiating equation1 and evaluating at 

. Substituting these values in equation3, at any point can be calculated from equation3. 

Provided  is small. 

When , then Taylor’s series equ3 can be written as 

(4) 

 Note:  We know that the Taylor’s expansion of y(x) about the point x0 in a power of (x – x0)is. 

y(x) = y(x0) + yI(x0) + yII(x0) + yIII(x0) + … (1) 

                                                                  Or 

y(x) = y0 +  +  +  + ….. 

If we let x – x0 = h. (i.e. x = x0 + h = x1) we can write the Taylor’s series as  

y(x) = y(x1) = y0 +   +  +  +  + …. 

i.e. y1 = y0 +  +  +  +  + …..                (2) 

( , )
dy

f x y
dx



0 0( )y x y

( )y x
0x 0( )x x

2

0 0 0
0 0 0 0

( ) ( ) ( )
( ) ( ) ( ) ( ) ............ ( )

1 2! !

n
nx x x x x x

y x y x y x y x y x
n

  
     

0( )y x

0 0 0( ), ( ),......... ( )ny x y x y x 

0x ( )y x

0h x x 

0 0x 

2

( ) (0) . (0) (0) ...... (0) ........
2! !

n
nx x

y x y x y y y
n

      

0( )

1!

x x 2

0( )

2!

x x 3

0( )

3!

x x

0( )

1!

x x
0

Iy

2

0( )

2!

x x
0

IIy

3

0( )

3!

x x
0

IIIy

1!

h
0

Iy
2

2!

h
0

IIy
3

3!

h
0

IIIy
4

4!

h
0

IVy

1!

h
0

Iy
2

2!

h
0

IIy
3

3!

h
0

IIIy 0
4!

IV
IVh

y



Similarly expanding y(x) in a Taylor’s series about x = x1. We will get. 

     y2 = y1 +  +  +  +  + …….                       (3) 

Similarly expanding y(x) in a Taylor’s series about x = x2 We will get. 

  y3 = y2 +  +  +  + + …...        (4) 

In general, Taylor’s expansion of y(x) at a point x= xn is 

  yn+1 = yn +  +  +  +  + …..         (5) 

 

Example 1. Using Taylor’s expansion evaluate the integral of  at . Hence 

compare the numerical solution obtained with exact solution . 

Sol: Given equation can be written as  

 Differentiating repeatedly w.r.t to ‘x’ and evaluating at  

  

 In general,  or  

The Taylor’s series expansion of  about  is 

  

Substituting the values of  

  

  equ1 
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Now put  in equ1 

  

Now put  in equ1 

  

  

Analytical Solution: 

 The exact solution of the equation  with  can be found as follows 

 Which is a linear in y. 

Here   

I.F =  

General solution is  

where   

The particular solution is  or  

Put in the above particular solution, 

 

Similarly put ,  

put ,  

MATLAB CODE FOR THE IMPLEMENTATION OF TAYLOR SERIES METHOD:- 

 

To find the numerical solution of the differential equation  
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  with the initial condition  

 

 

function [ soltable ] = odetaylor( f,x0,y0,xn,h,not ) 

% here f is a symbolic function function f(x,y) such that y=y(x) 

syms x y(x); 

xd=x0:h:xn; 

n=length(xd); 

yd=zeros(1,n); 

yd(1)=y0; 

for i=1:n-1 

    fold=f; 

    d=ones(1,not-1); 

        for j=1:not-1 

        d(j)=subs(fold,{x,y},{xd(i),yd(i)}); 

        fold=subs(diff(fold,x),diff(y(x),x),fold); 

        end 

    yd(i+1)=yd(i)+sum(d.*(h.^(1:not-1)./factorial(1:not-1))); 

end 

soltable=[xd' yd']; 

end 

 

 

 

EULER’S METHOD 

It is the simplest one-step method and it is less accurate. Hence it has a limited application. 

( , )
dy

f x y
dx


0 0( )y x y



Consider the differential equation   = f(x,y)          (1) 

                          With  y(x0) = y0                                     (2) 

Consider the first two terms of the Taylor’s expansion of y(x) at x = x0 

               y(x) = y(x0) + (x – x0) y1(x0)                 (3) 

from equation (1) y1(x0) = f(x0,y(x0)) = f(x0,y0) 

Substituting in equation (3) 

     y(x) = y(x0) + (x – x0) f(x0,y0) 

At x = x1, y(x1) = y(x0) + (x1 – x0) f(x0,y0) 

 y1 = y0 + h f(x0,y0)    where h = x1 – x0 

Similarly at x = x2 ,  y2 = y1 + h f(x1,y1), 

Proceeding as above, yn+1 = yn + h f(xn,yn) 

This is known as Euler’s Method 

Example 1. Using Euler’s method solve for x = 2 from  = 3x2 + 1,y(1) = 2,taking step size  

  (I) h = 0.5 and (II) h=0.25 

Sol:   Here f(x,y) = 3x2 + 1, x0 = 1,y0 = 2 

 Euler’s algorithm is yn+1 = yn + h  f(xn,yn), n = 0,1,2,3,…..                 (1) 

h = 0.5                                    x1 = x0 + h = 1+0.5 = 1.5 

 Taking n = 0 in (1) , we have               x2 = x1 + h = 1.5 + 0.5 = 2 

   y1 = y0 + h f(x0,y0) 

i.e.  y1 = y(0.5) = 2 + (0.5) f(1,2) = 2 + (0.5) (3 + 1) = 2 + (0.5)(4) 

      Here x1 = x0 + h = 1 + 0.5 = 1.5 

   y(1.5) = 4 = y1 

 Taking n = 1 in (1),we have  

   y2 = y1 + h f(x1,y1) 

 i.e. y(x2) = y2 = 4 + (0.5) f(1.5,4) = 4 + (0.5)[3(1.5)2 + 1] = 7.875 

dy

dx





dy

dx







  Here x2 = x4 + h = 1.5 + 0.5 = 2 

   y(2) = 7.875 

 h = 0.25                                    x1 = 1.25, x2 = 1.50, x3 = 1.75, x4 = 2 

  Taking n = 0 in (1), we have                

   y1 = y0 + h f(x0,y0) 

  i.e.  y(x1) = y1 = 2 + (0.25) f(1,2) = 2 + (0.25) (3 + 1) = 3 

       y(x2) = y2 = y1 + h f(x1,y1) 

  i.e. y(x2) = y2 = 3 + (0.25) f(1.25,3)  

                 = 3 + (0.25)[3(1.25)2 + 1]  

                         = 4.42188 

  Here x2 = x1 + h = 1.25 + 0.25 = 1.5 

   y(1.5) = 5.42188 

  Taking n = 2 in (1), we have                

  i.e.  y(x3) = y3 = h f(x2,y2)  

                    = 5.42188 + (0.25) f(1.5,2)  

                    = 5.42188 + (0.25) [3(1.5)2 + 1] 

           = 6.35938 

      Here x3 = x2 + h = 1.5 + 0.25 = 1.75 

   y(1.75) =7. 35938  

 Taking n = 4 in (1),we have  

   y(x4) = y4 = y3 + h f(x3,y3) 

 i.e. y(x4) = y4 = 7.35938 + (0.25) f(1.75,2)  

             = 7.35938 + (0.25)[3(1.75)2 + 1]  

             = 8.90626 











 Note that the difference in values of y(2) in both cases         

(i.e. when h = 0.5 and when h = 0.25).The accuracy is improved significantly when h is reduced to 0.25 

(Exact  solution of the equation is y = x3 + x and with this  y(2) = y2 = 10. 

 

MATLAB CODE FOR THE IMPLEMENTATION OF EULER’S METHOD:- 

 

To find the numerical solution of the differential equation  

  with the initial condition  

function [ soltable ] = odeeuler( f,x0,y0,xn,h ) 

 

x=x0:h:xn; 

n=length(x); 

y=zeros(1,n); 

y(1)=y0; 

for i=1:n-1 

y(i+1)=y(i)+h*f(x(i),y(i)); 

end 

soltable=[x' y']; 

end 

 

 

 

   

Modified Euler’s method 

It is given by  

Working rule : 

i) Modified Euler’s method 

( , )
dy

f x y
dx


0 0( )y x y

     
 1

1 1 1
/ 2 , ,1 , 1,2....., 0,1.....

ii

k k k k k k
y y h f x y f x i ki



  
     
 



 

ii) When  can be calculated from Euler’s method 

iii) k=0, 1……… gives number of iteration.  

gives number of times, a particular iteration k is repeated 

Suppose consider dy/dx=f(x, y) -------- (1) with y(x0) =y0----------- (2)2 

To find y(x1) =y1 at x=x1=x0+h 

Now take k=0 in modified Euler’s method 

We get ……………………… (3) 

Taking i=1, 2, 3...k+1 in equation (3), we get 

 (By Euler’s method) 

 

 

------------------------ 

 

If two successive values of are sufficiently close to one another, we will take the common 

value as  

We use the above procedure again 

Example1. Using modified Euler’s method, find the approximate value of when  given that 

 

Sol: Given  

Here  

Take h = 0.1 which is sufficiently small 

     
 1

1 1 1
/ 2 , ,1 , 1,2....., 0,1.....

ii

k k k k k k
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Here  

The formula for modified Euler’s method is given by 

        

Step1: To find y1= y(x1) = y (0.1) 

                  Taking k = 0 in eqn(1) 

            

     when     i = 1  in eqn (2) 

            

        First apply Euler’s method to calculate  = y1 

   

                = 1+(0.1)f(0.1) 

                = 1+(0.1) 

                = 1.10 

     

  

             = 1+0.1/2[f(0,1) + f(0.1,1.10) 

              = 1+0.1/2[(0+1)+(0.1+1.10)] 

              = 1.11 

   When i=2 in equation (2) 

     

             = 1+0.1/2[f(0.1)+f(0.1,1.11)] 

             = 1 + 0.1/2[(0+1)+(0.1+1.11)] 

0 1 0 2 1 3 20, 0.1, 0.2, 0.3x x x h x x h x x h         
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             = 1.1105 

     

                   = 1+0.1/2[f(0,1)+f(0.1 , 1.1105)] 

             = 1+0.1/2[(0+1)+(0.1+1.1105)] 

             = 1.1105 

Since  

           y1 = 1.1105 

 

Step:2    To find y2 = y(x2) = y(0.2) 

Taking k = 1 in equation (1) , we get  

       

                                                            I = 1,2,3,4,….. 

   For i = 1 

        

       is to be calculate from   Euler’s method  

       

              = 1.1105 + (0.1) f(0.1 , 1.1105) 

              = 1.1105+(0.1)[0.1+1.1105] 

               = 1.2316 

   =  

              = 1.1105 +0.1/2[0.1+1.1105+0.2+1.2316] 

              = 1.2426 
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                = 1.1105 + 0.1/2[f(0.1 , 1.1105) , f(0.2 . 1.2426)] 

                 = 1.1105 + 0.1/2[1.2105 + 1.4426] 

                 = 1.1105 + 0.1(1.3266) 

                 = 1.2432 

         

                = 1.1105+0.1/2[f(0.1,1.1105)+f(0.2 , 1.2432)] 

                = 1.1105+0.1/2[1.2105+1.4432)] 

                = 1.1105 + 0.1(1.3268) 

                = 1.2432 

          Since  

           Hence y2 = 1.2432 

 

Step:3  

To find y3 = y(x3) = y y(0.3) 

            Taking k =2 in equation (1) we get  

 

    For  i = 1 , 

 

 is to be evaluated from Euler’s method . 

      

              = 1.2432 +(0.1) f(0.2 , 1.2432)        

              = 1.2432+(0.1)(1.4432) 

      2 1

2 1 1 1 2 2/ 2 ,y y h f x y f x y   
 

      3 2

2 1 1 1 2 2/ 2 ,y y h f x y f x y   
 

   3 3

2 2y y

        1 1

3 2 2 2 3 3/ 2 , , 4
i

y y h f x y f x y
    

 

      1 0

3 2 2 2 3 3/ 2 , ,y y h f x y f x y   
 

 0

3y

   0

3 2 2 2,y y h f x y 



              = 1.3875 

   = 1.2432+0.1/2[f(0.2 , 1.2432)+f(0.3, 1.3875)] 

             = 1.2432  + 0.1/2[1.4432+1.6875] 

              = 1.2432+0.1(1.5654) 

               = 1.3997 

   

         = 1.2432+0.1/2[1.4432+(0.3+1.3997)] 

         = 1.2432+ (0.1) (1.575) 

         = 1.4003 

 

         = 1.2432+0.1/2[f(0.2 , 1.2432)+f(0.3 , 1.4003)] 

         = 1.2432 + 0.1(1.5718) 

          = 1.4004 

 

         = 1.2432 + 0.1/2[1.4432+1.7004] 

         = 1.2432+(0.1)(1.5718) 

          =  1.4004 

        Since  

  The value of y at x = 0.3 is 1.4004 

 

MATLAB CODE FOR THE IMPLEMENTATION OF Modified Euler’s method METHOD:- 

 

To find the numerical solution of the differential equation  

  1
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  with the initial condition  

function [ soltable ] = odemodifiedeuler( f,x0,y0,xn,h,tol ) 

x=x0:h:xn; 

n=length(x); 

y=zeros(1,n); 

y(1)=y0; 

for i=1:n-1 

    yp=y(i)+h*f(x(i),y(i)); 

    y(i+1)=y(i)+h*(f(x(i),y(i))+f(x(i),yp))/2; 

    while abs(yp-y(i+1)>tol) 

        yp=y(i+1); 

        y(i+1)=y(i)+h*(f(x(i),y(i))+f(x(i),yp))/2; 

    end 

     

end 

soltable=[x' y']; 

end 

 

 

Runge – Kutta Methods 

I. Second order R-K Formula 

yi+1 = yi+1/2 (K1+K2), 

Where K1 = h (xi, yi) 

 K2 = h (xi+h, yi+k1) for i= 0,1,2------- 

II. Third order R-K Formula 

yi+1 = yi+1/6 (K1+4K2+ K3), 

Where K1 = h (xi, yi) 

( , )
dy

f x y
dx


0 0( )y x y



 K2 = h (xi+h/2, y0+k1/2) 

 K3 = h (xi+h, yi+2k2-k1) 

For i= 0,1,2------- 

III. Fourth order R-K Formula 

yi+1 = yi+1/6 (K1+2K2+ 2K3 +K4), 

Where K1 = h (xi, yi) 

 K2 = h (xi+h/2, yi+k1/2) 

 K3 = h (xi+h/2, yi+k2/2) 

 K4 = h (xi+h, yi+k3) 

For i= 0,1,2------- 

Example 1.  Apply the 4th order R-K method to find an approximate value of y when x=1.2 in stepsof  0.1, 

given that y1 = x2+y2, y (1)=1.5 

sol. Given y1= x2+y2,and  y(1)=1.5 

Here f(x,y)= x2+y2, y0 =1.5 and x0=1,h=0.1 

So that x1=1.1 and x2=1.2 

Step1: 

To find y1 : 

By 4th  order R-K method we have 

y1=y0+1/6 (k1+2k2+2k3+k4) 

k1= h f(x0,y0) = (0.1) f(1,1.5) = (0.1) [12+(1.5)2] = 0.325 

k2= hf (x0+h/2,y0+k1/2) = (0.1) f(1+0.05,1.5+0.325) = 0.3866 

and  

k3= h f((x0+h/2,y0+k2/2) = (0.1) f(1.05,1.5+0. 3866/2) = (0.1)[(1.05)2+(1.6933)2] 

= 0.39698 

k4= hf(x0+h,y0+k3) = (0.1)f(1.0,1.89698) = 0.48085 

Hence  



 

Step2: 

To find y2, i.e.,  

Here x1=0.1,y1=1.8955 and h=0.1 

by 4th  order R-K method we have 

y2 = y1+(1/6) (k1+2k2+2k3+k4) 

k1= hf(x1,y1) = (0.1)f(0.1,1.8955) = (0.1) [12+(1.8955)2] = 0.48029 

k2 = hf (x1+h/2,y1+k1/2) = (0.1)f(1.1+0.1,1.8937+0.4796) = 0.58834 

 k3 = hf((x1+h/2,y1+k2/2) = (0.1)f(1.5,1.8937+0.58743) = (0.1)[(1.05)2+(1.6933)2] 

      =  0.611715 

k4 = hf(x1+h,y1+k3) = (0.1)f(1.2,1.8937+0.610728) = 0.77261 

Hence  

y2 = 1.8937+(1/6) (0.4796+2(0.58834)+2(0.611715)+0.7726) = 2.5043 

 y =2.5043 where . 

 

MATLAB CODE FOR THE IMPLEMENTATION OF 4th order R-K METHOD:- 

 

To find the numerical solution of the differential equation  

 with the initial condition  

function [ soltable ] = odeRK( f,x0,y0,xn,h ) 

n=length(x); 

y=zeros(1,n); 

y(1)=y0; 

for i=1:n-1 

   1

1
1.5 0.325 2 0.3866 2 0.39698 0.48085

6

1.8955

y       



   2 1.2y x y

0.2x 

( , )
dy

f x y
dx


0 0( )y x y



    k1=h*f(x(i),y(i)); 

    k2=h*f(x(i)+h/2,y(i)+k1/2); 

    k3=h*f(x(i)+h/2,y(i)+k2/2); 

    k4=h*f(x(i)+h,y(i)+k3); 

    y(i+1)=y(i)+(k1+2*(k2+k3)+k4)/6; 

end 

soltable=[x' y']; 

end 

 

Assignment-cum-Tutorial Questions 

 A.  Questions testing the remembering / understanding level of students 

I   Objective Questions 

1. If  = f(x,y),y(x0) = y0,the  formula for fourth order Runge – Kutta method is _______        

2. In which of the following methods, successive approximations are used? 

               a) Picard’s method                  b) Taylor series method 

               c) Adams-Bashforth method      d) None of these 

3. Which among the following is the self-starting method? 

               a) Adams-Bashforth method                       b) Milne’s method 

               c) Runge-Kutta method                              d) Predictor method 

4. Among the following, which is the best for solving initial value problem? 

               a) Modified Euler’s method                           b) Picard’s method 

               c) Runge-Kutta method of fourth order         d) Taylor series method 

5. Which of the following is a step-by-step method? 

               a) Picard’s method                  b) Taylor series method 

               c) Adams-Bashforth method      d) None of these 

dy

dx



 

B. Questions testing the ability of students in applying the 

concepts 

    I) Multiple choice Questions  

1. If  = -y, y(0) = 1, h = 0.01 then by Euler’s method, the value of y1 = __________ 

        a) 0.099 b) 0.0981 c) 0.99      d) none  

 

2.  If  = , y(0) = 1 and h = 0.02, using Euler’s method the value of y1 =  _________ 

                 a) 1.02    b) 1.04  c) 1.03 d) none 

 3. If  = x2+y2, y(0) = 0 using Taylor’s series method, the value of y(0.4)=___________ 

      a) 0.2133 b) 0.02133 c) 0.002133 d) None  

4. The value of y at x= 0.1 using Runge – Kutta method of fourth order for the differential      

      equation  = x – 2y, y(0) = 1 taking h = 0.1 is __________ 

      a) 0.825 b) 0.0825 c) 0.813 d) None 

 5.  The value of y at x = 0.1 using modified Euler’s method up to second approximation for   
   

     

       dy/dx = x – y, y(0) = 1 is _________ 

       a) 0.909 b) 0.0909 c) 0.809 d) None 

  6   If  = 1 + y2, f(x0,y0) =1,h – 0.2,K1 = 0.2,K2 = 0.202,K3 = 0.20204,K4 = 0.20216, then the    

        value of y1 by fourth order Runge – Kutta method is ________ 

 a) 0.0202 b) 0.202 c) 0.102 d) None 

  7. Using Runge – Kutta method, the approximate value of y(0.1) if  = x + y2,y = 1  

dy

dx

dy

dx

y x

y x





dy

dx

dy

dx

dy

dx

dy

dx



       where      x =0 and f(x0,y0) = 1 K1 = 0.1, K2 = 0.115, K3 = 0.116, K4 = 0.134 is  

           a) 1.116 b) 1.001 c) 1.211 d) None  

  8. Using Runge-kutta method, to solve the differential equation yx
dx

dy
 , h=0.1 and  

y(0) = 1. 

(i) The values of k1, k2, k3 and k4 respectively are 

a) 0.11, 0.121, 0.1, 0.005 

b) 0.1, 0.11, 0.1105, 0.12105 

c) 0.111, 0.11105, 0.121005, 0.121 

d) None of these 

(ii) For the above problem y(0.1) = _______ 

a) 1.11034           b)    1.33011     c)     1.43001      d)   None of these 

II Problems 

1. Solve y1 = x-y2, y(0) = 1 using Taylor’s series method and evaluate y(0.1), y(0.2).  

2. Given y1 = x+ sin y, y(0)=1 compute y(0.2) and y(0.4) with h=0.2 using modified Euler’s    

method 

3. Using R-K method, find y(0.2) for the equation dy/dx=y-x , y(0)=1,take h=0.22. 

given that y=1 when x=0 and  

4. Using Taylor’s series method, solve the equation  for  given that      

when 4.  

5. Find the solution of  = x-y , y(0)=1 at x =0.1 , 0.2 ,0.3 , 0.4 and 0.5 using modified  

Euler’s method. 

6. Write the R-K method of 4th order formula for the solution    of 

 
  

  
                . 

7. Using R-K method, estimate y(0.2) and y(0.4) for the equation dy/dx=y2-x2/ y2+x2,y(0)=1,h=0.2. 

8. Explain the Modified Euler's method. 

dy
x y

dx
 

2 2dy
x y

dx
  0.4x  0y 

0x 

dy

dx



9. Find y(0.1) & y(0.2) using Euler's modified formula given that = x2 – y, y(0) = 1 

10. Find y(0.1) & y(0.2) using Runge - Kutta 4th order formula given that y1 = x2 – y &  y(0)  =1. 

11. Write a code in MATLAB to find the numerical solution of first order ordinary differential equation 

using R-K Method of fourth order. 

12. Write a code in MATLAB to find the numerical solution of first order ordinary differential equation 

using Euler’s Method. 

 

 

C. Questions testing the analyzing / evaluating ability of students  

 

1. Solve by Taylor’s series method, the equation xy
dx

dy
log for y(1.1) and y(1.2), given  

y(1) = 2. 

2. Using R – K method, solve for y at x = 1.2, 1.4 from 
x

x

xex

exy

dx

dy






2

2
given y(1) = 0. 

 

 

GATE QUESTIONS 

 

1. Consider an ordinary differential equation dx/dt=4t+4 if  x =0 at t = 0, the increment 

in x calculated using Runge-Kutta fourth order multi-step method with a step size of  

Δt = 0.2 is  __________                (GATE2014) 

  (A) 0.22        (B) 0.44        (C) 0.66           (D) 0.88 

 

 

 

 

 

 
 

 

 

dy

dx



UNIT-VI 

CURVE FITTING 
 

Objectives: 

 To understand the application of 'Least Square Method' 

 

Pre-requisite : Commands of MATLab 
 

Syllabus: Fitting a straight line - Parabolic curve - exponential curve - power 

curve by the method of least squares. 

 

Learning  Outcomes:  

At the end of the unit, Students will be able to  

 Fit a straight line to the given data. 

 Fit a Parabola to the given data. 

 Fit an exponential curve and a power curve the given data.  
 

 

Least Square Method: 

The principle of least squares is one of the popular methods for finding a curve fitting a given 

data. Say                           be n observations from an experiment. We are interested 

in finding a curve 

 

Closely fitting the given data of size 'n'. Now at       while the observed value of  y is    , the 

expected value of y from the curve (1)  is       . Let us define the residual by 

 

Likewise, the residuals at all other points    , ...,    are given by 

 

....................(3) 

........................... 

  



 

Some of the residuals       may be positive and some may be negative. We would like to find the 

curve fitting the given data such that the residual at any     is as small as possible. Now since 

some of the residuals are positive and others are negative and as we would like to give equal 

importance to all the residuals it is desirable to consider sum of the squares of these residuals, 

say  and thereby find the curve that minimizes . Thus, we consider 

 

and find the best representative curve (1) that minimizes (4). 

2.4.2 Least Square Fit of a Straight Line 

Suppose that we are given a data set                            of 'n' observations from an 

experiment. Say that we are interested in fitting a straight line 

 

to the given data. Find the 'n' residuals    's by: 

 

Now consider the sum of the squares of    's i.e 

 

 

Note that  is a function of parameters a and b. We need to find a,b such that  is minimum. 

The necessary condition for  to be minimum is given by: 

 

The condition 
  

  
   yields: 



 

i.e                               

Similarly the condition 
  

  
   yields 

 

Equations (5) and (6) are called as normal equations,which are to be solved to get desired values 

for a and b. 

The expression for  i.e (3) can be re-written in a convenient way as follows: 

 

Example: Using the method of least squares, find an equation of the form 

       that fits the following data: 

 

Solution: Consider the normal equations of least square fit of a straight line i.e 

 

 

Here n=5. 



From the given data, we have, 

 

Therefore the normal equations are given by: 

30a +10b =243 ................(3) 

10a+5b=76.......................(4) 

On solving (3) and (4) we get 

a = 9.1 , b= - 3 ................................................................(5) 

Hence the required fit for the given data is 

y=9.1x - 3  ...................... ..(6) 

Remarks: 

(1) Experimental data may not be always linear. One may be interested in fitting either a curve of 

the form                          However, both of these forms can be linearized by 

taking logarithms on both the sides. Let us look at the details: 

 



On taking logarithms on both the sides we get: 

 

Say                              

Using (3) in (2) we get 

 

which is linear in X, Y. 

 

On taking logarithms we get 

 

                        

 we get 

 

which is linear in Y, x. 

Example: By the method of least square fit a curve of the form         to the following data: 

 

Solution. 

Consider        ----(1) 

On taking logarithm on both the sides we get 



 

                                   

Using (3) in (2) we get 

 

Data in modified variables X,Y 

 

Normal equations corresponding to the straight line fit (4) are: 

 

 

From the modified data we get 

 

 normal equations take the form: 

 



 

On solving for b & A, we obtain, 

 

. 

  The desired curve is                 

Matlab code to fit exponential curve of the form y=a*e^(bx) 

 

function [a,b]=exp1fit(x,y) % to fit y=a*e^(bx) 

% on applying logarithm ln, we have lny=lna+bx 

n=length(x); 

A=[sum(x) n;sum(x.*x) sum(x)]; 

B=[sum(ln(y));sum(ln(y).*x)]; 

coef=A\B; 

a=exp(coef(2)); % since coef(2)=lna 

b=coef(1); 

end 

 

Matlab code to fit exponential curve of the form y=a*b^x 

 

function [a,b]=exp2fit(x,y) % to fit y=a*(b^x) 

% on applying log10 we have logy=loga+xlogb 

n=length(x); 



A=[sum(x) n;sum(x.*x) sum(x)]; 

B=[sum(log10(y));sum(log10(y).*x)]; 

coef=A\B; 

a=10^coef(2); 

b=10^coef(1); 

end 

 

Matlab code to fit power curve of the form y=a*x^b 

 

function [a,b]=powerfit(x,y) % to fit y=a*(x^b) 

% on applying logarithm ln, we have lny=lna+blnx 

n=length(x); 

A=[sum(ln(x)) n;sum(ln(x).*ln(x)) sum(ln(x))]; 

B=[sum(ln(y));sum(ln(y).*ln(x))]; 

coef=A\B; 

a=exp(coef(2)); % since coef(2)=lna 

b=coef(1); 

end 

 

 

Least Square fit of a parabola 

Given a data set of n observations                           of an experiment .Now we try to 

fit a best possible parabola 



 

following the principle of least square. Finding the appropriate parabola amounts to determining 

the constants a,b,c that minimize the sum of the squares of the residuals    
             given 

by 

 

The necessary condition for E to be minimum is 

 

Now the condition 
  

  
    yields 

 

i.e                                

Similarly 
  

  
   yields 

 

i.e                                      

Finally 
  

  
   yields 



 

Equations (4), (5) and (6) are called as normal equations whose solution yields the values of the 

constants a, b and c and thus the desired parabola. 

Example: Given the following data from an experimental observation 

y: 9.4 11.8 14.7 18.0 23.0   

x: 1.0 1.6 2.5 4.0 6.0   

fit a parabola in the form            following the principle of least square. 

Solution) Here n=5 

The normal equations for finding a parabolic fit are: 

 

  

(1) 

 

 

  



 

 The normal equations are: 

 

  

 

(2) 

 

  

On Solving (2) for a,b,c we get 

 

Matlab code to fit quadratic curve i.e., parabola y=ax^2+bx+c :- 

function [coef]=parabolafit(x,y) 

% this is the function file to fit parabola whose 

% equation is y=ax^2+bx+c 

n=length(x); 

% Coefficient matrix of the normal equations to fit y=ax^2+bx+c 



A=[sum(x.^2) sum(x) n; 

    sum(x.^3) sum(x.^2) sum(x); 

    sum(x.^4) sum(x.^3) sum(x.^2)]; 

B=[sum(y);sum(y.*x);sum(y.*(x.^2))]; 

disp([A,B]); 

coef=A\B; 

end 

 

Assignment-Cum-Tutorial Questions 
 

Section-A 

Objective Questions: 
1. Write the normal equation in method of least squares to fit a straight line. 

2. Write the normal equation in method of least squares to fit a parabola. 

3. Is it necessary that the curve due to method of least squares agree at the points in the given 

data? 

4. In method of least squares to fit a straight line, is the following statement is ture? 

 "The mean of the data points is always a point on the straight line." 

 

 

Section-B 

     Subjective Questions 
 

1. Derive the normal equations in fitting a straight line in Method of least squares. 

2. Derive the normal equations in fitting a parabola in Method of least squares. 

3. If p is the pull required to lift the weight by means of a ulley block, find a linear law of the 

form p=a+bw, connecting p and w, using the following data: 

w (lb): 50 70 100 120 

p (lb): 12 15 21 25 

Compute p, when w=150lb. 

4. The results of measurement of electric resistance R of a copper bar at various temperatures 

    are listed below: 



t: 19 25 30 36 40 45 50 

R: 76 77 79 80 82 83 85 

Find a relation R=a+bt when a and b are constants to be determined by you. 

5. Write a code in MATLAB  to implement Least Squares Method to fit a straight line. 

6.  Derive the normal equations in fitting a parabola in Method of least squares.  

7. Write a code in MATLAB  to implement Least Squares Method to fit a parabola curve. 

8. Fit a parabola y= a+bx+cx
2
 to the following data: 

x: 2 4 6 8 10 

y: 3.07 12.85 31.47 57.38 91.29 

9. The following table gives the results of the measurements of train resistances; V is the velocity 

in miles per hour. R is the resistance in pounds per ton: 

V: 20 40 60  80 100 120 

R: 5.5 9.1 14.9 22.8 33.3 46.0 

If R is related to V by the relation R=a+bV+cV
2
, find a, b and c. 

10. Fit the exponential curve        to the following data: 

x: 2 4 6 8 

y: 25 38 56 84 

11. Predict y at x=3.75 , by fitting a power curve to the given data: 

x: 1 2 3 4 5 6 

y: 298 4.26 5.21 6.10 6.80 7.50 

12. Write a code in MATLAB  to implement Least Squares Method to fit a power curve. 

 

 


